mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00

* Remove all __future__ imports from RLlib. * Remove (object) again from tf_run_builder.py::TFRunBuilder. * Fix 2xLINT warnings. * Fix broken appo_policy import (must be appo_tf_policy) * Remove future imports from all other ray files (not just RLlib). * Remove future imports from all other ray files (not just RLlib). * Remove future import blocks that contain `unicode_literals` as well. Revert appo_tf_policy.py to appo_policy.py (belongs to another PR). * Add two empty lines before Schedule class. * Put back __future__ imports into determine_tests_to_run.py. Fails otherwise on a py2/print related error.
39 lines
1.2 KiB
Python
39 lines
1.2 KiB
Python
import argparse
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.agents.trainer_template import build_trainer
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.torch_policy_template import build_torch_policy
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--iters", type=int, default=200)
|
|
|
|
|
|
def policy_gradient_loss(policy, model, dist_class, train_batch):
|
|
logits, _ = model({SampleBatch.CUR_OBS: train_batch[SampleBatch.CUR_OBS]})
|
|
action_dist = dist_class(logits, model)
|
|
log_probs = action_dist.logp(train_batch[SampleBatch.ACTIONS])
|
|
return -train_batch[SampleBatch.REWARDS].dot(log_probs)
|
|
|
|
|
|
# <class 'ray.rllib.policy.torch_policy_template.MyTorchPolicy'>
|
|
MyTorchPolicy = build_torch_policy(
|
|
name="MyTorchPolicy", loss_fn=policy_gradient_loss)
|
|
|
|
# <class 'ray.rllib.agents.trainer_template.MyCustomTrainer'>
|
|
MyTrainer = build_trainer(
|
|
name="MyCustomTrainer",
|
|
default_policy=MyTorchPolicy,
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
ray.init()
|
|
args = parser.parse_args()
|
|
tune.run(
|
|
MyTrainer,
|
|
stop={"training_iteration": args.iters},
|
|
config={
|
|
"env": "CartPole-v0",
|
|
"num_workers": 2,
|
|
})
|