ray/release/xgboost_tests/workloads/tune_4x32.py
Kai Fricke 8804758409
[xgboost] Add XGBoost release tests (#13456)
* Add XGBoost release tests

* Add more xgboost release tests

* Use failure state manager

* Add release test documentation

* Fix wording

* Automate fault tolerance tests
2021-01-20 18:40:23 +01:00

56 lines
1.3 KiB
Python

"""Moderate Ray Tune run (4 trials, 32 actors).
This training run will start 4 Ray Tune trials, each starting 32 actors.
The cluster comprises 32 nodes.
Test owner: krfricke
Acceptance criteria: Should run through and report final results, as well
as the Ray Tune results table. No trials should error. All trials should
run in parallel.
"""
import ray
from ray import tune
from xgboost_ray import RayParams
from _train import train_ray
def train_wrapper(config):
ray_params = RayParams(
elastic_training=False,
max_actor_restarts=2,
num_actors=32,
cpus_per_actor=1,
gpus_per_actor=0)
train_ray(
path="/data/classification.parquet",
num_workers=32,
num_boost_rounds=100,
num_files=128,
regression=False,
use_gpu=False,
ray_params=ray_params,
xgboost_params=config,
)
if __name__ == "__main__":
search_space = {
"eta": tune.loguniform(1e-4, 1e-1),
"subsample": tune.uniform(0.5, 1.0),
"max_depth": tune.randint(1, 9)
}
ray.init(address="auto")
analysis = tune.run(
train_wrapper,
config=search_space,
num_samples=4,
resources_per_trial={
"cpu": 1,
"extra_cpu": 31
})