ray/rllib/utils/exploration/soft_q.py

52 lines
2.1 KiB
Python

from gym.spaces import Discrete, Space
from typing import Union, Optional
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.models.tf.tf_action_dist import Categorical
from ray.rllib.models.torch.torch_action_dist import TorchCategorical
from ray.rllib.utils.annotations import override
from ray.rllib.utils.exploration.stochastic_sampling import StochasticSampling
from ray.rllib.utils.framework import TensorType
class SoftQ(StochasticSampling):
"""Special case of StochasticSampling w/ Categorical and temperature param.
Returns a stochastic sample from a Categorical parameterized by the model
output divided by the temperature. Returns the argmax iff explore=False.
"""
def __init__(self,
action_space: Space,
*,
framework: Optional[str],
temperature: float = 1.0,
**kwargs):
"""Initializes a SoftQ Exploration object.
Args:
action_space (Space): The gym action space used by the environment.
temperature (float): The temperature to divide model outputs by
before creating the Categorical distribution to sample from.
framework (str): One of None, "tf", "torch".
"""
assert isinstance(action_space, Discrete)
super().__init__(action_space, framework=framework, **kwargs)
self.temperature = temperature
@override(StochasticSampling)
def get_exploration_action(self,
action_distribution: ActionDistribution,
timestep: Union[int, TensorType],
explore: bool = True):
cls = type(action_distribution)
assert cls in [Categorical, TorchCategorical]
# Re-create the action distribution with the correct temperature
# applied.
dist = cls(
action_distribution.inputs,
self.model,
temperature=self.temperature)
# Delegate to super method.
return super().get_exploration_action(
action_distribution=dist, timestep=timestep, explore=explore)