ray/release/lightgbm_tests/workloads/tune_small.py
2021-07-14 08:38:55 +01:00

72 lines
1.8 KiB
Python

"""Small Ray Tune run (4 trials, 4 actors).
This training run will start 4 Ray Tune Trials, each starting 4 actors.
The cluster comprises 4 nodes.
Test owner: Yard1 (primary), krfricke
Acceptance criteria: Should run through and report final results, as well
as the Ray Tune results table. No trials should error. All trials should
run in parallel.
"""
from collections import Counter
import json
import os
import time
import ray
from ray import tune
from lightgbm_ray import RayParams
from ray.util.lightgbm.release_test_util import train_ray
def train_wrapper(config, ray_params):
train_ray(
path="/data/classification.parquet",
num_workers=4,
num_boost_rounds=100,
num_files=25,
regression=False,
use_gpu=False,
ray_params=ray_params,
lightgbm_params=config,
)
if __name__ == "__main__":
search_space = {
"eta": tune.loguniform(1e-4, 1e-1),
"subsample": tune.uniform(0.5, 1.0),
"max_depth": tune.randint(1, 9)
}
ray.init(address="auto")
ray_params = RayParams(
elastic_training=False,
max_actor_restarts=2,
num_actors=4,
cpus_per_actor=1,
gpus_per_actor=0)
start = time.time()
analysis = tune.run(
tune.with_parameters(train_wrapper, ray_params=ray_params),
config=search_space,
num_samples=4,
resources_per_trial=ray_params.get_tune_resources())
taken = time.time() - start
result = {
"time_taken": taken,
"trial_states": dict(
Counter([trial.status for trial in analysis.trials]))
}
test_output_json = os.environ.get("TEST_OUTPUT_JSON",
"/tmp/tune_small.json")
with open(test_output_json, "wt") as f:
json.dump(result, f)
print("PASSED.")