mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00

* Fix MNIST downloading problems in parameter server examples. * Improve seeding. * Fixes.
191 lines
7.2 KiB
Python
191 lines
7.2 KiB
Python
# Most of the tensorflow code is adapted from Tensorflow's tutorial on using
|
|
# CNNs to train MNIST
|
|
# https://www.tensorflow.org/get_started/mnist/pros#build-a-multilayer-convolutional-network. # noqa: E501
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import ray
|
|
import tensorflow as tf
|
|
from tensorflow.examples.tutorials.mnist import input_data
|
|
import time
|
|
|
|
|
|
def download_mnist_retry(seed=0, max_num_retries=20):
|
|
for _ in range(max_num_retries):
|
|
try:
|
|
return input_data.read_data_sets("MNIST_data", one_hot=True,
|
|
seed=seed)
|
|
except tf.errors.AlreadyExistsError:
|
|
time.sleep(1)
|
|
raise Exception("Failed to download MNIST.")
|
|
|
|
|
|
class SimpleCNN(object):
|
|
def __init__(self, learning_rate=1e-4):
|
|
with tf.Graph().as_default():
|
|
|
|
# Create the model
|
|
self.x = tf.placeholder(tf.float32, [None, 784])
|
|
|
|
# Define loss and optimizer
|
|
self.y_ = tf.placeholder(tf.float32, [None, 10])
|
|
|
|
# Build the graph for the deep net
|
|
self.y_conv, self.keep_prob = deepnn(self.x)
|
|
|
|
with tf.name_scope('loss'):
|
|
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
|
|
labels=self.y_, logits=self.y_conv)
|
|
self.cross_entropy = tf.reduce_mean(cross_entropy)
|
|
|
|
with tf.name_scope('adam_optimizer'):
|
|
self.optimizer = tf.train.AdamOptimizer(learning_rate)
|
|
self.train_step = self.optimizer.minimize(
|
|
self.cross_entropy)
|
|
|
|
with tf.name_scope('accuracy'):
|
|
correct_prediction = tf.equal(tf.argmax(self.y_conv, 1),
|
|
tf.argmax(self.y_, 1))
|
|
correct_prediction = tf.cast(correct_prediction, tf.float32)
|
|
self.accuracy = tf.reduce_mean(correct_prediction)
|
|
|
|
self.sess = tf.Session(config=tf.ConfigProto(
|
|
intra_op_parallelism_threads=1,
|
|
inter_op_parallelism_threads=1))
|
|
self.sess.run(tf.global_variables_initializer())
|
|
|
|
# Helper values.
|
|
|
|
self.variables = ray.experimental.TensorFlowVariables(
|
|
self.cross_entropy, self.sess)
|
|
|
|
self.grads = self.optimizer.compute_gradients(
|
|
self.cross_entropy)
|
|
self.grads_placeholder = [
|
|
(tf.placeholder("float", shape=grad[1].get_shape()), grad[1])
|
|
for grad in self.grads]
|
|
self.apply_grads_placeholder = self.optimizer.apply_gradients(
|
|
self.grads_placeholder)
|
|
|
|
def compute_update(self, x, y):
|
|
# TODO(rkn): Computing the weights before and after the training step
|
|
# and taking the diff is awful.
|
|
weights = self.get_weights()[1]
|
|
self.sess.run(self.train_step, feed_dict={self.x: x,
|
|
self.y_: y,
|
|
self.keep_prob: 0.5})
|
|
new_weights = self.get_weights()[1]
|
|
return [x - y for x, y in zip(new_weights, weights)]
|
|
|
|
def compute_gradients(self, x, y):
|
|
return self.sess.run([grad[0] for grad in self.grads],
|
|
feed_dict={self.x: x,
|
|
self.y_: y,
|
|
self.keep_prob: 0.5})
|
|
|
|
def apply_gradients(self, gradients):
|
|
feed_dict = {}
|
|
for i in range(len(self.grads_placeholder)):
|
|
feed_dict[self.grads_placeholder[i][0]] = gradients[i]
|
|
self.sess.run(self.apply_grads_placeholder, feed_dict=feed_dict)
|
|
|
|
def compute_accuracy(self, x, y):
|
|
return self.sess.run(self.accuracy,
|
|
feed_dict={self.x: x,
|
|
self.y_: y,
|
|
self.keep_prob: 1.0})
|
|
|
|
def set_weights(self, variable_names, weights):
|
|
self.variables.set_weights(dict(zip(variable_names, weights)))
|
|
|
|
def get_weights(self):
|
|
weights = self.variables.get_weights()
|
|
return list(weights.keys()), list(weights.values())
|
|
|
|
|
|
def deepnn(x):
|
|
"""deepnn builds the graph for a deep net for classifying digits.
|
|
|
|
Args:
|
|
x: an input tensor with the dimensions (N_examples, 784), where 784 is
|
|
the number of pixels in a standard MNIST image.
|
|
|
|
Returns:
|
|
A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with
|
|
values equal to the logits of classifying the digit into one of 10
|
|
classes (the digits 0-9). keep_prob is a scalar placeholder for the
|
|
probability of dropout.
|
|
"""
|
|
# Reshape to use within a convolutional neural net.
|
|
# Last dimension is for "features" - there is only one here, since images
|
|
# are grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
|
|
with tf.name_scope('reshape'):
|
|
x_image = tf.reshape(x, [-1, 28, 28, 1])
|
|
|
|
# First convolutional layer - maps one grayscale image to 32 feature maps.
|
|
with tf.name_scope('conv1'):
|
|
W_conv1 = weight_variable([5, 5, 1, 32])
|
|
b_conv1 = bias_variable([32])
|
|
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
|
|
|
|
# Pooling layer - downsamples by 2X.
|
|
with tf.name_scope('pool1'):
|
|
h_pool1 = max_pool_2x2(h_conv1)
|
|
|
|
# Second convolutional layer -- maps 32 feature maps to 64.
|
|
with tf.name_scope('conv2'):
|
|
W_conv2 = weight_variable([5, 5, 32, 64])
|
|
b_conv2 = bias_variable([64])
|
|
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
|
|
|
|
# Second pooling layer.
|
|
with tf.name_scope('pool2'):
|
|
h_pool2 = max_pool_2x2(h_conv2)
|
|
|
|
# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
|
|
# is down to 7x7x64 feature maps -- maps this to 1024 features.
|
|
with tf.name_scope('fc1'):
|
|
W_fc1 = weight_variable([7 * 7 * 64, 1024])
|
|
b_fc1 = bias_variable([1024])
|
|
|
|
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
|
|
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
|
|
|
|
# Dropout - controls the complexity of the model, prevents co-adaptation of
|
|
# features.
|
|
with tf.name_scope('dropout'):
|
|
keep_prob = tf.placeholder(tf.float32)
|
|
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
|
|
|
|
# Map the 1024 features to 10 classes, one for each digit
|
|
with tf.name_scope('fc2'):
|
|
W_fc2 = weight_variable([1024, 10])
|
|
b_fc2 = bias_variable([10])
|
|
|
|
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
|
|
return y_conv, keep_prob
|
|
|
|
|
|
def conv2d(x, W):
|
|
"""conv2d returns a 2d convolution layer with full stride."""
|
|
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
|
|
|
|
|
|
def max_pool_2x2(x):
|
|
"""max_pool_2x2 downsamples a feature map by 2X."""
|
|
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
|
|
strides=[1, 2, 2, 1], padding='SAME')
|
|
|
|
|
|
def weight_variable(shape):
|
|
"""weight_variable generates a weight variable of a given shape."""
|
|
initial = tf.truncated_normal(shape, stddev=0.1)
|
|
return tf.Variable(initial)
|
|
|
|
|
|
def bias_variable(shape):
|
|
"""bias_variable generates a bias variable of a given shape."""
|
|
initial = tf.constant(0.1, shape=shape)
|
|
return tf.Variable(initial)
|