mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
46 lines
1.6 KiB
YAML
46 lines
1.6 KiB
YAML
interest-evolution-recsim-env-slateq:
|
|
env: ray.rllib.examples.env.recommender_system_envs_with_recsim.InterestEvolutionRecSimEnv
|
|
run: SlateQ
|
|
stop:
|
|
episode_reward_mean: 160.0
|
|
timesteps_total: 100000
|
|
config:
|
|
framework: tf
|
|
|
|
# RLlib/RecSim wrapper specific settings:
|
|
env_config:
|
|
# Env class specified above takes one `config` arg in its c'tor:
|
|
config:
|
|
# Each step, sample `num_candidates` documents using the env-internal
|
|
# document sampler model (a logic that creates n documents to select
|
|
# the slate from).
|
|
resample_documents: true
|
|
num_candidates: 10
|
|
# How many documents to recommend (out of `num_candidates`) each
|
|
# timestep?
|
|
slate_size: 2
|
|
# Should the action space be purely Discrete? Useful for algos that
|
|
# don't support MultiDiscrete (e.g. DQN or Bandits).
|
|
# SlateQ handles MultiDiscrete action spaces.
|
|
convert_to_discrete_action_space: false
|
|
seed: 0
|
|
|
|
# Fake 2 GPUs.
|
|
num_gpus: 2
|
|
_fake_gpus: true
|
|
|
|
exploration_config:
|
|
warmup_timesteps: 10000
|
|
epsilon_timesteps: 25000
|
|
|
|
replay_buffer_config:
|
|
capacity: 100000
|
|
|
|
# Double learning rate and batch size.
|
|
lr: 0.002
|
|
train_batch_size: 64
|
|
|
|
learning_starts: 10000
|
|
target_network_update_freq: 3200
|
|
|
|
metrics_num_episodes_for_smoothing: 200
|