ray/rllib/agents/cql
2022-05-02 12:51:14 +02:00
..
tests [RLlib] CQL: training iteration function. (#24166) 2022-04-26 14:28:39 +02:00
__init__.py [RLlib] New Offline RL Algorithm: CQL (based on SAC) (#13118) 2020-12-30 10:11:57 -05:00
cql.py [RLlib] Deprecate timesteps_per_iteration config key (in favor of min_[sample|train]_timesteps_per_reporting. (#24372) 2022-05-02 12:51:14 +02:00
cql_tf_policy.py [RLlib] Issue 22693: RNN-SAC fixes. (#23814) 2022-04-25 09:19:24 +02:00
cql_torch_policy.py [RLlib] Issue 22693: RNN-SAC fixes. (#23814) 2022-04-25 09:19:24 +02:00
README.md [RLlib] CQL Documentation + Tests (#14531) 2021-03-11 18:51:39 +01:00

Conservative Q-Learning (CQL)

Overview

CQL is an offline RL algorithm that mitigates the overestimation of Q-values outside the dataset distribution via convservative critic estimates. CQL does this by adding a simple Q regularizer loss to the standard Belman update loss. This ensures that the critic does not output overly-optimistic Q-values and can be added on top of any off-policy Q-learning algorithm (in this case, we use SAC).

Documentation & Implementation:

Conservative Q-Learning (CQL).

Detailed Documentation

Implementation