ray/rllib/tuned_examples/pendulum-ddpg.yaml

55 lines
1.5 KiB
YAML

# This configuration can expect to reach -160 reward in 10k-20k timesteps
pendulum-ddpg:
env: Pendulum-v0
run: DDPG
stop:
episode_reward_mean: -160
timesteps_total: 100000
config:
# === Model ===
actor_hiddens: [64, 64]
critic_hiddens: [64, 64]
n_step: 1
model: {}
gamma: 0.99
env_config: {}
# === Exploration ===
exploration_should_anneal: True
schedule_max_timesteps: 100000
timesteps_per_iteration: 600
exploration_fraction: 0.1
exploration_final_scale: 0.02
exploration_ou_noise_scale: 0.1
exploration_ou_theta: 0.15
exploration_ou_sigma: 0.2
target_network_update_freq: 0
tau: 0.001
# === Replay buffer ===
buffer_size: 10000
prioritized_replay: True
prioritized_replay_alpha: 0.6
prioritized_replay_beta: 0.4
prioritized_replay_eps: 0.000001
clip_rewards: False
# === Optimization ===
actor_lr: 0.001
critic_lr: 0.001
use_huber: True
huber_threshold: 1.0
l2_reg: 0.000001
learning_starts: 500
sample_batch_size: 1
train_batch_size: 64
# === Parallelism ===
num_workers: 0
num_gpus_per_worker: 0
per_worker_exploration: False
worker_side_prioritization: False
# === Evaluation ===
evaluation_interval: 5
evaluation_num_episodes: 10