ray/rllib/examples/custom_keras_rnn_model.py
2019-10-07 14:25:16 -07:00

172 lines
5.5 KiB
Python

"""Example of using a custom RNN keras model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gym
from gym.spaces import Discrete
import numpy as np
import random
import argparse
import ray
from ray import tune
from ray.tune.registry import register_env
from ray.rllib.models import ModelCatalog
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.tf.recurrent_tf_modelv2 import RecurrentTFModelV2
from ray.rllib.utils.annotations import override
from ray.rllib.utils import try_import_tf
tf = try_import_tf()
parser = argparse.ArgumentParser()
parser.add_argument("--run", type=str, default="PPO")
parser.add_argument("--env", type=str, default="RepeatAfterMeEnv")
parser.add_argument("--stop", type=int, default=90)
class MyKerasRNN(RecurrentTFModelV2):
"""Example of using the Keras functional API to define a RNN model."""
def __init__(self,
obs_space,
action_space,
num_outputs,
model_config,
name,
hiddens_size=256,
cell_size=64):
super(MyKerasRNN, self).__init__(obs_space, action_space, num_outputs,
model_config, name)
self.cell_size = cell_size
# Define input layers
input_layer = tf.keras.layers.Input(
shape=(None, obs_space.shape[0]), name="inputs")
state_in_h = tf.keras.layers.Input(shape=(cell_size, ), name="h")
state_in_c = tf.keras.layers.Input(shape=(cell_size, ), name="c")
seq_in = tf.keras.layers.Input(shape=(), name="seq_in", dtype=tf.int32)
# Preprocess observation with a hidden layer and send to LSTM cell
dense1 = tf.keras.layers.Dense(
hiddens_size, activation=tf.nn.relu, name="dense1")(input_layer)
lstm_out, state_h, state_c = tf.keras.layers.LSTM(
cell_size, return_sequences=True, return_state=True, name="lstm")(
inputs=dense1,
mask=tf.sequence_mask(seq_in),
initial_state=[state_in_h, state_in_c])
# Postprocess LSTM output with another hidden layer and compute values
logits = tf.keras.layers.Dense(
self.num_outputs,
activation=tf.keras.activations.linear,
name="logits")(lstm_out)
values = tf.keras.layers.Dense(
1, activation=None, name="values")(lstm_out)
# Create the RNN model
self.rnn_model = tf.keras.Model(
inputs=[input_layer, seq_in, state_in_h, state_in_c],
outputs=[logits, values, state_h, state_c])
self.register_variables(self.rnn_model.variables)
self.rnn_model.summary()
@override(RecurrentTFModelV2)
def forward_rnn(self, inputs, state, seq_lens):
model_out, self._value_out, h, c = self.rnn_model([inputs, seq_lens] +
state)
return model_out, [h, c]
@override(ModelV2)
def get_initial_state(self):
return [
np.zeros(self.cell_size, np.float32),
np.zeros(self.cell_size, np.float32),
]
@override(ModelV2)
def value_function(self):
return tf.reshape(self._value_out, [-1])
class RepeatInitialEnv(gym.Env):
"""Simple env in which the policy learns to repeat the initial observation
seen at timestep 0."""
def __init__(self):
self.observation_space = Discrete(2)
self.action_space = Discrete(2)
self.token = None
self.num_steps = 0
def reset(self):
self.token = random.choice([0, 1])
self.num_steps = 0
return self.token
def step(self, action):
if action == self.token:
reward = 1
else:
reward = -1
self.num_steps += 1
done = self.num_steps > 100
return 0, reward, done, {}
class RepeatAfterMeEnv(gym.Env):
"""Simple env in which the policy learns to repeat a previous observation
token after a given delay."""
def __init__(self, config):
self.observation_space = Discrete(2)
self.action_space = Discrete(2)
self.delay = config["repeat_delay"]
assert self.delay >= 1, "delay must be at least 1"
self.history = []
def reset(self):
self.history = [0] * self.delay
return self._next_obs()
def step(self, action):
if action == self.history[-(1 + self.delay)]:
reward = 1
else:
reward = -1
done = len(self.history) > 100
return self._next_obs(), reward, done, {}
def _next_obs(self):
token = random.choice([0, 1])
self.history.append(token)
return token
if __name__ == "__main__":
ray.init()
args = parser.parse_args()
ModelCatalog.register_custom_model("rnn", MyKerasRNN)
register_env("RepeatAfterMeEnv", lambda c: RepeatAfterMeEnv(c))
register_env("RepeatInitialEnv", lambda _: RepeatInitialEnv())
tune.run(
args.run,
stop={"episode_reward_mean": args.stop},
config={
"env": args.env,
"env_config": {
"repeat_delay": 2,
},
"gamma": 0.9,
"num_workers": 0,
"num_envs_per_worker": 20,
"entropy_coeff": 0.001,
"num_sgd_iter": 5,
"vf_loss_coeff": 1e-5,
"model": {
"custom_model": "rnn",
"max_seq_len": 20,
},
})