ray/rllib/examples/policy/episode_env_aware_policy.py

66 lines
2.4 KiB
Python

import numpy as np
from ray.rllib.examples.policy.random_policy import RandomPolicy
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.view_requirement import ViewRequirement
from ray.rllib.utils.annotations import override
class EpisodeEnvAwarePolicy(RandomPolicy):
"""A Policy that always knows the current EpisodeID and EnvID and
returns these in its actions."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.episode_id = None
self.env_id = None
class _fake_model:
pass
self.model = _fake_model()
self.model.time_major = True
self.model.inference_view_requirements = {
SampleBatch.EPS_ID: ViewRequirement(),
"env_id": ViewRequirement(),
SampleBatch.OBS: ViewRequirement(),
SampleBatch.PREV_ACTIONS: ViewRequirement(
SampleBatch.ACTIONS, space=self.action_space, shift=-1),
SampleBatch.PREV_REWARDS: ViewRequirement(
SampleBatch.REWARDS, shift=-1),
}
self.training_view_requirements = dict(
**{
SampleBatch.NEXT_OBS: ViewRequirement(
SampleBatch.OBS, shift=1),
SampleBatch.ACTIONS: ViewRequirement(space=self.action_space),
SampleBatch.REWARDS: ViewRequirement(),
SampleBatch.DONES: ViewRequirement(),
},
**self.model.inference_view_requirements)
@override(Policy)
def is_recurrent(self):
return True
@override(Policy)
def compute_actions_from_input_dict(self,
input_dict,
explore=None,
timestep=None,
**kwargs):
self.episode_id = input_dict[SampleBatch.EPS_ID][0]
self.env_id = input_dict["env_id"][0]
# Always return (episodeID, envID)
return [
np.array([self.episode_id, self.env_id]) for _ in input_dict["obs"]
], [], {}
@override(Policy)
def postprocess_trajectory(self,
sample_batch,
other_agent_batches=None,
episode=None):
sample_batch["postprocessed_column"] = sample_batch["obs"] + 1.0
return sample_batch