ray/rllib/policy/tests/test_compute_log_likelihoods.py
Sven Mika 2fb219a658
[Ray RLlib] Fix tree import (#7662)
* Rollback.

* Fix import tree error by adding meaningful error and replacing by tf.nest wherever possible.

* LINT.

* LINT.

* Fix.

* Fix log-likelihood test case failing on travis.
2020-03-22 13:51:24 -07:00

205 lines
7.8 KiB
Python

import numpy as np
from scipy.stats import norm
from tensorflow.python.eager.context import eager_mode
import unittest
import ray.rllib.agents.dqn as dqn
import ray.rllib.agents.pg as pg
import ray.rllib.agents.ppo as ppo
import ray.rllib.agents.sac as sac
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check
from ray.rllib.utils.numpy import one_hot, fc, MIN_LOG_NN_OUTPUT, \
MAX_LOG_NN_OUTPUT
tf = try_import_tf()
def do_test_log_likelihood(run,
config,
prev_a=None,
continuous=False,
layer_key=("fc", (0, 4)),
logp_func=None):
config = config.copy()
# Run locally.
config["num_workers"] = 0
# Env setup.
if continuous:
env = "Pendulum-v0"
obs_batch = preprocessed_obs_batch = np.array([[0.0, 0.1, -0.1]])
else:
env = "FrozenLake-v0"
config["env_config"] = {"is_slippery": False, "map_name": "4x4"}
obs_batch = np.array([0])
preprocessed_obs_batch = one_hot(obs_batch, depth=16)
prev_r = None if prev_a is None else np.array(0.0)
# Test against all frameworks.
for fw in ["tf", "eager", "torch"]:
if run in [dqn.DQNTrainer, sac.SACTrainer] and fw == "torch":
continue
print("Testing {} with framework={}".format(run, fw))
config["eager"] = fw == "eager"
config["use_pytorch"] = fw == "torch"
eager_ctx = None
if fw == "eager":
eager_ctx = eager_mode()
eager_ctx.__enter__()
assert tf.executing_eagerly()
elif fw == "tf":
assert not tf.executing_eagerly()
trainer = run(config=config, env=env)
policy = trainer.get_policy()
vars = policy.get_weights()
# Sample n actions, then roughly check their logp against their
# counts.
num_actions = 1000 if not continuous else 50
actions = []
for _ in range(num_actions):
# Single action from single obs.
actions.append(
trainer.compute_action(
obs_batch[0],
prev_action=prev_a,
prev_reward=prev_r,
explore=True))
# Test all taken actions for their log-likelihoods vs expected values.
if continuous:
for idx in range(num_actions):
a = actions[idx]
if fw == "tf" or fw == "eager":
if isinstance(vars, list):
expected_mean_logstd = fc(
fc(obs_batch, vars[layer_key[1][0]]),
vars[layer_key[1][1]])
else:
expected_mean_logstd = fc(
fc(
obs_batch,
vars["default_policy/{}_1/kernel".format(
layer_key[0])]),
vars["default_policy/{}_out/kernel".format(
layer_key[0])])
else:
expected_mean_logstd = fc(
fc(obs_batch,
vars["_hidden_layers.0._model.0.weight"]),
vars["_logits._model.0.weight"])
mean, log_std = np.split(expected_mean_logstd, 2, axis=-1)
if logp_func is None:
expected_logp = np.log(norm.pdf(a, mean, np.exp(log_std)))
else:
expected_logp = logp_func(mean, log_std, a)
logp = policy.compute_log_likelihoods(
np.array([a]),
preprocessed_obs_batch,
prev_action_batch=np.array([prev_a]),
prev_reward_batch=np.array([prev_r]))
check(logp, expected_logp[0], rtol=0.2)
# Test all available actions for their logp values.
else:
for a in [0, 1, 2, 3]:
count = actions.count(a)
expected_prob = count / num_actions
logp = policy.compute_log_likelihoods(
np.array([a]),
preprocessed_obs_batch,
prev_action_batch=np.array([prev_a]),
prev_reward_batch=np.array([prev_r]))
check(np.exp(logp), expected_prob, atol=0.2)
if eager_ctx:
eager_ctx.__exit__(None, None, None)
class TestComputeLogLikelihood(unittest.TestCase):
def test_dqn(self):
"""Tests, whether DQN correctly computes logp in soft-q mode."""
config = dqn.DEFAULT_CONFIG.copy()
# Soft-Q for DQN.
config["exploration_config"] = {"type": "SoftQ", "temperature": 0.5}
do_test_log_likelihood(dqn.DQNTrainer, config)
def test_pg_cont(self):
"""Tests PG's (cont. actions) compute_log_likelihoods method."""
config = pg.DEFAULT_CONFIG.copy()
config["model"]["fcnet_hiddens"] = [10]
config["model"]["fcnet_activation"] = "linear"
prev_a = np.array([0.0])
do_test_log_likelihood(
pg.PGTrainer,
config,
prev_a,
continuous=True,
layer_key=("fc", (0, 2)))
def test_pg_discr(self):
"""Tests PG's (cont. actions) compute_log_likelihoods method."""
config = pg.DEFAULT_CONFIG.copy()
prev_a = np.array(0)
do_test_log_likelihood(pg.PGTrainer, config, prev_a)
def test_ppo_cont(self):
"""Tests PPO's (cont. actions) compute_log_likelihoods method."""
config = ppo.DEFAULT_CONFIG.copy()
config["model"]["fcnet_hiddens"] = [10]
config["model"]["fcnet_activation"] = "linear"
prev_a = np.array([0.0])
do_test_log_likelihood(ppo.PPOTrainer, config, prev_a, continuous=True)
def test_ppo_discr(self):
"""Tests PPO's (discr. actions) compute_log_likelihoods method."""
prev_a = np.array(0)
do_test_log_likelihood(ppo.PPOTrainer, ppo.DEFAULT_CONFIG, prev_a)
def test_sac_cont(self):
"""Tests SAC's (cont. actions) compute_log_likelihoods method."""
config = sac.DEFAULT_CONFIG.copy()
config["policy_model"]["hidden_layer_sizes"] = [10]
config["policy_model"]["hidden_activation"] = "linear"
prev_a = np.array([0.0])
# SAC cont uses a squashed normal distribution. Implement it's logp
# logic here in numpy for comparing results.
def logp_func(means, log_stds, values, low=-1.0, high=1.0):
stds = np.exp(
np.clip(log_stds, MIN_LOG_NN_OUTPUT, MAX_LOG_NN_OUTPUT))
unsquashed_values = np.arctanh((values - low) /
(high - low) * 2.0 - 1.0)
log_prob_unsquashed = \
np.sum(np.log(norm.pdf(unsquashed_values, means, stds)), -1)
return log_prob_unsquashed - \
np.sum(np.log(1 - np.tanh(unsquashed_values) ** 2),
axis=-1)
do_test_log_likelihood(
sac.SACTrainer,
config,
prev_a,
continuous=True,
layer_key=("sequential/action", (0, 2)),
logp_func=logp_func)
def test_sac_discr(self):
"""Tests SAC's (discrete actions) compute_log_likelihoods method."""
config = sac.DEFAULT_CONFIG.copy()
config["policy_model"]["hidden_layer_sizes"] = [10]
config["policy_model"]["hidden_activation"] = "linear"
prev_a = np.array(0)
do_test_log_likelihood(
sac.SACTrainer,
config,
prev_a,
layer_key=("sequential/action", (0, 2)))
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))