ray/rllib/tuned_examples/dqn/pong-dqn.yaml

24 lines
643 B
YAML

# You can expect ~20 reward within 1.1m timesteps / 2.1 hours on a K80 GPU
pong-deterministic-dqn:
env: PongDeterministic-v4
run: DQN
stop:
episode_reward_mean: 20
time_total_s: 7200
config:
# Works for both torch and tf.
framework: tf
num_gpus: 1
gamma: 0.99
lr: .0001
learning_starts: 10000
buffer_size: 50000
rollout_fragment_length: 4
train_batch_size: 32
exploration_config:
epsilon_timesteps: 200000
final_epsilon: .01
model:
grayscale: True
zero_mean: False
dim: 42