ray/rllib/examples/attention_net.py

75 lines
2.6 KiB
Python

import argparse
import ray
from ray import tune
from ray.rllib.utils import try_import_tf
from ray.rllib.models.tf.attention_net import GTrXLNet
from ray.rllib.examples.env.look_and_push import LookAndPush, OneHot
from ray.rllib.examples.env.repeat_after_me_env import RepeatAfterMeEnv
from ray.rllib.examples.env.repeat_initial_obs_env import RepeatInitialObsEnv
from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole
from ray.rllib.utils.test_utils import check_learning_achieved
from ray.tune import registry
tf = try_import_tf()
parser = argparse.ArgumentParser()
parser.add_argument("--run", type=str, default="PPO")
parser.add_argument("--env", type=str, default="RepeatAfterMeEnv")
parser.add_argument("--num-cpus", type=int, default=0)
parser.add_argument("--torch", action="store_true")
parser.add_argument("--as-test", action="store_true")
parser.add_argument("--stop-iters", type=int, default=200)
parser.add_argument("--stop-timesteps", type=int, default=500000)
parser.add_argument("--stop-reward", type=float, default=80)
if __name__ == "__main__":
args = parser.parse_args()
assert not args.torch, "PyTorch not supported for AttentionNets yet!"
ray.init(num_cpus=args.num_cpus or None, local_mode=True)
registry.register_env("RepeatAfterMeEnv", lambda c: RepeatAfterMeEnv(c))
registry.register_env("RepeatInitialObsEnv",
lambda _: RepeatInitialObsEnv())
registry.register_env("LookAndPush", lambda _: OneHot(LookAndPush()))
registry.register_env("StatelessCartPole", lambda _: StatelessCartPole())
config = {
"env": args.env,
"env_config": {
"repeat_delay": 2,
},
"gamma": 0.99,
"num_workers": 0,
"num_envs_per_worker": 20,
"entropy_coeff": 0.001,
"num_sgd_iter": 5,
"vf_loss_coeff": 1e-5,
"model": {
"custom_model": GTrXLNet,
"max_seq_len": 50,
"custom_model_config": {
"num_transformer_units": 1,
"attn_dim": 64,
"num_heads": 2,
"memory_tau": 50,
"head_dim": 32,
"ff_hidden_dim": 32,
},
},
"framework": "torch" if args.torch else "tf",
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
results = tune.run(args.run, config=config, stop=stop, verbose=1)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()