ray/doc/source/tune/tutorials/overview.rst
Simon Mo 495221e7d2
[Doc] Update Serve logo for tune user guide (#22369)
We have deprecated the old logo.
2022-02-15 12:10:08 -06:00

239 lines
6.8 KiB
ReStructuredText

.. _tune-guides:
===========
User Guides
===========
.. tip:: We'd love to hear your feedback on using Tune - `get in touch <https://forms.gle/PTRvGLbKRdUfuzQo9>`_!
In this section, you can find material on how to use Tune and its various features.
You can follow our :ref:`How-To Guides<tune-recipes>`, :ref:`Tune Feature Guides<tune-feature-guides>`, or
go through some :ref:`Exercises<tune-exercises>`, to get started.
.. _tune-recipes:
Practical How-To Guides
-----------------------
.. panels::
:container: container pb-4 full-width
:column: col-md-3 px-2 py-2
:img-top-cls: pt-5 w-75 d-block mx-auto
---
:img-top: /images/tune-sklearn.png
+++
.. link-button:: tune-sklearn
:type: ref
:text: How To Use Tune's Scikit-Learn Adapters?
:classes: btn-link btn-block stretched-link
---
:img-top: /images/pytorch_logo.png
+++
.. link-button:: tune-pytorch-cifar-ref
:type: ref
:text: How To Use Tune With PyTorch Models?
:classes: btn-link btn-block stretched-link
---
:img-top: /images/pytorch_lightning_small.png
+++
.. link-button:: tune-pytorch-lightning-ref
:type: ref
:text: How To Tune PyTorch Lightning Models
:classes: btn-link btn-block stretched-link
---
:img-top: /images/serve.svg
+++
.. link-button:: tune-serve-integration-mnist
:type: ref
:text: Model Selection & Serving With Ray Serve
:classes: btn-link btn-block stretched-link
---
:img-top: /images/xgboost_logo.png
+++
.. link-button:: tune-xgboost-ref
:type: ref
:text: A Guide To Tuning XGBoost Parameters With Tune
:classes: btn-link btn-block stretched-link
---
:img-top: /images/wandb_logo.png
+++
.. link-button:: tune-wandb-ref
:type: ref
:text: Tracking Your Experiment Process Weights & Biases
:classes: btn-link btn-block stretched-link
---
:img-top: /images/mlflow.png
+++
.. link-button:: tune-mlflow-ref
:type: ref
:text: Using MLflow Tracking & AutoLogging with Tune
:classes: btn-link btn-block stretched-link
---
:img-top: /images/comet_logo_full.png
+++
.. link-button:: tune-comet-ref
:type: ref
:text: Using Comet with Ray Tune For Experiment Management
:classes: btn-link btn-block stretched-link
.. _tune-feature-guides:
Tune Feature Guides
-------------------
.. panels::
:container: container pb-4 full-width
:column: col-md-3 px-2 py-2
:img-top-cls: pt-5 w-50 d-block mx-auto
---
:img-top: /images/tune.png
.. link-button:: tune-stopping
:type: ref
:text: A Guide To Stopping and Resuming Tune Experiments
:classes: btn-link btn-block stretched-link
---
:img-top: /images/tune.png
.. link-button:: tune-metrics
:type: ref
:text: Using Callbacks and Metrics in Tune
:classes: btn-link btn-block stretched-link
---
:img-top: /images/tune.png
.. link-button:: tune-output
:type: ref
:text: How To Log Tune Runs
:classes: btn-link btn-block stretched-link
---
:img-top: /images/tune.png
.. link-button:: tune-resources
:type: ref
:text: Using Resources (GPUs, Parallel & Distributed Runs)
:classes: btn-link btn-block stretched-link
---
:img-top: /images/tune.png
.. link-button:: tune-checkpoints
:type: ref
:text: Using Checkpoints For Your Experiments
:classes: btn-link btn-block stretched-link
---
:img-top: /images/tune.png
.. link-button:: tune-lifecycle
:type: ref
:text: How does Tune work?
:classes: btn-link btn-block stretched-link
---
:img-top: /images/tune.png
.. link-button:: tune-advanced-tutorial
:type: ref
:text: A simple guide to Population-based Training
:classes: btn-link btn-block stretched-link
---
:img-top: /images/tune.png
.. link-button:: tune-distributed
:type: ref
:text: A Guide To Distributed Hyperparameter Tuning
:classes: btn-link btn-block stretched-link
.. _tune-exercises:
Exercises
---------
Learn how to use Tune in your browser with the following Colab-based exercises.
.. raw:: html
<table>
<tr>
<th class="tune-colab">Exercise Description</th>
<th class="tune-colab">Library</th>
<th class="tune-colab">Colab Link</th>
</tr>
<tr>
<td class="tune-colab">Basics of using Tune.</td>
<td class="tune-colab">TF/Keras</td>
<td class="tune-colab">
<a href="https://colab.research.google.com/github/ray-project/tutorial/blob/master/tune_exercises/exercise_1_basics.ipynb" target="_parent">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Tune Tutorial"/>
</a>
</td>
</tr>
<tr>
<td class="tune-colab">Using Search algorithms and Trial Schedulers to optimize your model.</td>
<td class="tune-colab">Pytorch</td>
<td class="tune-colab">
<a href="https://colab.research.google.com/github/ray-project/tutorial/blob/master/tune_exercises/exercise_2_optimize.ipynb" target="_parent">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Tune Tutorial"/>
</a>
</td>
</tr>
<tr>
<td class="tune-colab">Using Population-Based Training (PBT).</td>
<td class="tune-colab">Pytorch</td>
<td class="tune-colab">
<a href="https://colab.research.google.com/github/ray-project/tutorial/blob/master/tune_exercises/exercise_3_pbt.ipynb" target="_parent">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Tune Tutorial"/>
</a>
</td>
</tr>
<tr>
<td class="tune-colab">Fine-tuning Huggingface Transformers with PBT.</td>
<td class="tune-colab">Huggingface Transformers/Pytorch</td>
<td class="tune-colab">
<a href="https://colab.research.google.com/drive/1tQgAKgcKQzheoh503OzhS4N9NtfFgmjF?usp=sharing" target="_parent">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Tune Tutorial"/>
</a>
</td>
</tr>
<tr>
<td class="tune-colab">Logging Tune Runs to Comet ML.</td>
<td class="tune-colab">Comet</td>
<td class="tune-colab">
<a href="https://colab.research.google.com/drive/1dp3VwVoAH1acn_kG7RuT62mICnOqxU1z?usp=sharing" target="_parent">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Tune Tutorial"/>
</a>
</td>
</tr>
</table>
Tutorial source files `can be found here <https://github.com/ray-project/tutorial>`_.