mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
149 lines
5.6 KiB
Python
149 lines
5.6 KiB
Python
# This code is copied and adapted from Andrej Karpathy's code for learning to
|
|
# play Pong https://gist.github.com/karpathy/a4166c7fe253700972fcbc77e4ea32c5.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import cPickle as pickle
|
|
import ray
|
|
|
|
import gym
|
|
|
|
# hyperparameters
|
|
H = 200 # number of hidden layer neurons
|
|
batch_size = 10 # every how many episodes to do a param update?
|
|
learning_rate = 1e-4
|
|
gamma = 0.99 # discount factor for reward
|
|
decay_rate = 0.99 # decay factor for RMSProp leaky sum of grad^2
|
|
resume = False # resume from previous checkpoint?
|
|
|
|
D = 80 * 80 # input dimensionality: 80x80 grid
|
|
|
|
# Function for initializing the gym environment.
|
|
def env_initializer():
|
|
return gym.make("Pong-v0")
|
|
|
|
# Function for reinitializing the gym environment in order to guarantee that
|
|
# the state of the game is reset after each remote task.
|
|
def env_reinitializer(env):
|
|
env.reset()
|
|
return env
|
|
|
|
# Create a reusable variable for the gym environment.
|
|
ray.reusables.env = ray.Reusable(env_initializer, env_reinitializer)
|
|
|
|
def sigmoid(x):
|
|
return 1.0 / (1.0 + np.exp(-x)) # sigmoid "squashing" function to interval [0,1]
|
|
|
|
def preprocess(I):
|
|
"""preprocess 210x160x3 uint8 frame into 6400 (80x80) 1D float vector"""
|
|
I = I[35:195] # crop
|
|
I = I[::2,::2,0] # downsample by factor of 2
|
|
I[I == 144] = 0 # erase background (background type 1)
|
|
I[I == 109] = 0 # erase background (background type 2)
|
|
I[I != 0] = 1 # everything else (paddles, ball) just set to 1
|
|
return I.astype(np.float).ravel()
|
|
|
|
def discount_rewards(r):
|
|
"""take 1D float array of rewards and compute discounted reward"""
|
|
discounted_r = np.zeros_like(r)
|
|
running_add = 0
|
|
for t in reversed(xrange(0, r.size)):
|
|
if r[t] != 0: running_add = 0 # reset the sum, since this was a game boundary (pong specific!)
|
|
running_add = running_add * gamma + r[t]
|
|
discounted_r[t] = running_add
|
|
return discounted_r
|
|
|
|
def policy_forward(x, model):
|
|
h = np.dot(model["W1"], x)
|
|
h[h < 0] = 0 # ReLU nonlinearity
|
|
logp = np.dot(model["W2"], h)
|
|
p = sigmoid(logp)
|
|
return p, h # return probability of taking action 2, and hidden state
|
|
|
|
def policy_backward(eph, epx, epdlogp, model):
|
|
"""backward pass. (eph is array of intermediate hidden states)"""
|
|
dW2 = np.dot(eph.T, epdlogp).ravel()
|
|
dh = np.outer(epdlogp, model["W2"])
|
|
dh[eph <= 0] = 0 # backpro prelu
|
|
dW1 = np.dot(dh.T, epx)
|
|
return {"W1": dW1, "W2": dW2}
|
|
|
|
@ray.remote(num_return_vals=2)
|
|
def compute_gradient(model):
|
|
env = ray.reusables.env
|
|
observation = env.reset()
|
|
prev_x = None # used in computing the difference frame
|
|
xs, hs, dlogps, drs = [], [], [], []
|
|
reward_sum = 0
|
|
done = False
|
|
while not done:
|
|
cur_x = preprocess(observation)
|
|
x = cur_x - prev_x if prev_x is not None else np.zeros(D)
|
|
prev_x = cur_x
|
|
|
|
aprob, h = policy_forward(x, model)
|
|
action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
|
|
|
|
xs.append(x) # observation
|
|
hs.append(h) # hidden state
|
|
y = 1 if action == 2 else 0 # a "fake label"
|
|
dlogps.append(y - aprob) # grad that encourages the action that was taken to be taken (see http://cs231n.github.io/neural-networks-2/#losses if confused)
|
|
|
|
observation, reward, done, info = env.step(action)
|
|
reward_sum += reward
|
|
|
|
drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
|
|
|
|
epx = np.vstack(xs)
|
|
eph = np.vstack(hs)
|
|
epdlogp = np.vstack(dlogps)
|
|
epr = np.vstack(drs)
|
|
xs, hs, dlogps, drs = [], [], [], [] # reset array memory
|
|
|
|
# compute the discounted reward backwards through time
|
|
discounted_epr = discount_rewards(epr)
|
|
# standardize the rewards to be unit normal (helps control the gradient estimator variance)
|
|
discounted_epr -= np.mean(discounted_epr)
|
|
discounted_epr /= np.std(discounted_epr)
|
|
epdlogp *= discounted_epr # modulate the gradient with advantage (PG magic happens right here.)
|
|
return policy_backward(eph, epx, epdlogp, model), reward_sum
|
|
|
|
if __name__ == "__main__":
|
|
ray.init(start_ray_local=True, num_workers=10)
|
|
|
|
# Run the reinforcement learning
|
|
running_reward = None
|
|
batch_num = 1
|
|
if resume:
|
|
model = pickle.load(open("save.p", "rb"))
|
|
else:
|
|
model = {}
|
|
model["W1"] = np.random.randn(H, D) / np.sqrt(D) # "Xavier" initialization
|
|
model["W2"] = np.random.randn(H) / np.sqrt(H)
|
|
grad_buffer = {k: np.zeros_like(v) for k, v in model.iteritems()} # update buffers that add up gradients over a batch
|
|
rmsprop_cache = {k: np.zeros_like(v) for k, v in model.iteritems()} # rmsprop memory
|
|
|
|
while True:
|
|
model_id = ray.put(model)
|
|
grads, reward_sums = [], []
|
|
# Launch tasks to compute gradients from multiple rollouts in parallel.
|
|
for i in range(batch_size):
|
|
grad_id, reward_sum_id = compute_gradient.remote(model_id)
|
|
grads.append(grad_id)
|
|
reward_sums.append(reward_sum_id)
|
|
for i in range(batch_size):
|
|
grad = ray.get(grads[i])
|
|
reward_sum = ray.get(reward_sums[i])
|
|
for k in model: grad_buffer[k] += grad[k] # accumulate grad over batch
|
|
running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
|
|
print("Batch {}. episode reward total was {}. running mean: {}".format(batch_num, reward_sum, running_reward))
|
|
for k, v in model.iteritems():
|
|
g = grad_buffer[k] # gradient
|
|
rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g ** 2
|
|
model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
|
|
grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
|
|
batch_num += 1
|
|
if batch_num % 10 == 0: pickle.dump(model, open("save.p", "wb"))
|