mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00

* attribute-based heterogeneity-awareness in global scheduler and photon * minor post-rebase fix * photon: enforce dynamic capacity constraint on task dispatch * globalsched: cap the number of times we try to schedule a task in round robin * propagating ability to specify resource capacity to ray.init * adding resources to remote function export and fetch/register * globalsched: remove unused functions; update cached photon resource capacity (until next photon heartbeat) * Add some integration tests. * globalsched: cleanup + factor out constraint checking * lots of style * task_spec_required_resource: global refactor * clang format * clang format + comment update in photon * clang format photon comment * valgrind * reduce verbosity for Travis * Add test for scheduler load balancing. * addressing comments * refactoring global scheduler algorithm * Minor cleanups. * Linting. * Fix array_test.py and linting. * valgrind fix for photon tests * Attempt to fix stress tests. * fix hashmap free * fix hashmap free comment * memset photon resource vectors to 0 in case they get used before the first heartbeat * More whitespace changes. * Undo whitespace error I introduced.
206 lines
7.5 KiB
Python
206 lines
7.5 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import ray
|
|
import numpy as np
|
|
import time
|
|
from numpy.testing import assert_equal, assert_almost_equal
|
|
import sys
|
|
|
|
if sys.version_info >= (3, 0):
|
|
from importlib import reload
|
|
|
|
import ray.experimental.array.remote as ra
|
|
import ray.experimental.array.distributed as da
|
|
|
|
class RemoteArrayTest(unittest.TestCase):
|
|
|
|
def testMethods(self):
|
|
for module in [ra.core, ra.random, ra.linalg, da.core, da.random, da.linalg]:
|
|
reload(module)
|
|
ray.init(num_workers=1)
|
|
|
|
# test eye
|
|
object_id = ra.eye.remote(3)
|
|
val = ray.get(object_id)
|
|
assert_almost_equal(val, np.eye(3))
|
|
|
|
# test zeros
|
|
object_id = ra.zeros.remote([3, 4, 5])
|
|
val = ray.get(object_id)
|
|
assert_equal(val, np.zeros([3, 4, 5]))
|
|
|
|
# test qr - pass by value
|
|
a_val = np.random.normal(size=[10, 11])
|
|
q_id, r_id = ra.linalg.qr.remote(a_val)
|
|
q_val = ray.get(q_id)
|
|
r_val = ray.get(r_id)
|
|
assert_almost_equal(np.dot(q_val, r_val), a_val)
|
|
|
|
# test qr - pass by objectid
|
|
a = ra.random.normal.remote([10, 13])
|
|
q_id, r_id = ra.linalg.qr.remote(a)
|
|
a_val = ray.get(a)
|
|
q_val = ray.get(q_id)
|
|
r_val = ray.get(r_id)
|
|
assert_almost_equal(np.dot(q_val, r_val), a_val)
|
|
|
|
ray.worker.cleanup()
|
|
|
|
class DistributedArrayTest(unittest.TestCase):
|
|
|
|
def testAssemble(self):
|
|
for module in [ra.core, ra.random, ra.linalg, da.core, da.random, da.linalg]:
|
|
reload(module)
|
|
ray.init(num_workers=1)
|
|
|
|
a = ra.ones.remote([da.BLOCK_SIZE, da.BLOCK_SIZE])
|
|
b = ra.zeros.remote([da.BLOCK_SIZE, da.BLOCK_SIZE])
|
|
x = da.DistArray([2 * da.BLOCK_SIZE, da.BLOCK_SIZE], np.array([[a], [b]]))
|
|
assert_equal(x.assemble(), np.vstack([np.ones([da.BLOCK_SIZE, da.BLOCK_SIZE]), np.zeros([da.BLOCK_SIZE, da.BLOCK_SIZE])]))
|
|
|
|
ray.worker.cleanup()
|
|
|
|
def testMethods(self):
|
|
for module in [ra.core, ra.random, ra.linalg, da.core, da.random, da.linalg]:
|
|
reload(module)
|
|
ray.worker._init(start_ray_local=True, num_workers=10, num_local_schedulers=2, num_cpus=[10, 10])
|
|
|
|
x = da.zeros.remote([9, 25, 51], "float")
|
|
assert_equal(ray.get(da.assemble.remote(x)), np.zeros([9, 25, 51]))
|
|
|
|
x = da.ones.remote([11, 25, 49], dtype_name="float")
|
|
assert_equal(ray.get(da.assemble.remote(x)), np.ones([11, 25, 49]))
|
|
|
|
x = da.random.normal.remote([11, 25, 49])
|
|
y = da.copy.remote(x)
|
|
assert_equal(ray.get(da.assemble.remote(x)), ray.get(da.assemble.remote(y)))
|
|
|
|
x = da.eye.remote(25, dtype_name="float")
|
|
assert_equal(ray.get(da.assemble.remote(x)), np.eye(25))
|
|
|
|
x = da.random.normal.remote([25, 49])
|
|
y = da.triu.remote(x)
|
|
assert_equal(ray.get(da.assemble.remote(y)), np.triu(ray.get(da.assemble.remote(x))))
|
|
|
|
x = da.random.normal.remote([25, 49])
|
|
y = da.tril.remote(x)
|
|
assert_equal(ray.get(da.assemble.remote(y)), np.tril(ray.get(da.assemble.remote(x))))
|
|
|
|
x = da.random.normal.remote([25, 49])
|
|
y = da.random.normal.remote([49, 18])
|
|
z = da.dot.remote(x, y)
|
|
w = da.assemble.remote(z)
|
|
u = da.assemble.remote(x)
|
|
v = da.assemble.remote(y)
|
|
assert_almost_equal(ray.get(w), np.dot(ray.get(u), ray.get(v)))
|
|
assert_almost_equal(ray.get(w), np.dot(ray.get(u), ray.get(v)))
|
|
|
|
# test add
|
|
x = da.random.normal.remote([23, 42])
|
|
y = da.random.normal.remote([23, 42])
|
|
z = da.add.remote(x, y)
|
|
assert_almost_equal(ray.get(da.assemble.remote(z)), ray.get(da.assemble.remote(x)) + ray.get(da.assemble.remote(y)))
|
|
|
|
# test subtract
|
|
x = da.random.normal.remote([33, 40])
|
|
y = da.random.normal.remote([33, 40])
|
|
z = da.subtract.remote(x, y)
|
|
assert_almost_equal(ray.get(da.assemble.remote(z)), ray.get(da.assemble.remote(x)) - ray.get(da.assemble.remote(y)))
|
|
|
|
# test transpose
|
|
x = da.random.normal.remote([234, 432])
|
|
y = da.transpose.remote(x)
|
|
assert_equal(ray.get(da.assemble.remote(x)).T, ray.get(da.assemble.remote(y)))
|
|
|
|
# test numpy_to_dist
|
|
x = da.random.normal.remote([23, 45])
|
|
y = da.assemble.remote(x)
|
|
z = da.numpy_to_dist.remote(y)
|
|
w = da.assemble.remote(z)
|
|
assert_equal(ray.get(da.assemble.remote(x)), ray.get(da.assemble.remote(z)))
|
|
assert_equal(ray.get(y), ray.get(w))
|
|
|
|
# test da.tsqr
|
|
for shape in [[123, da.BLOCK_SIZE], [7, da.BLOCK_SIZE], [da.BLOCK_SIZE, da.BLOCK_SIZE], [da.BLOCK_SIZE, 7], [10 * da.BLOCK_SIZE, da.BLOCK_SIZE]]:
|
|
x = da.random.normal.remote(shape)
|
|
K = min(shape)
|
|
q, r = da.linalg.tsqr.remote(x)
|
|
x_val = ray.get(da.assemble.remote(x))
|
|
q_val = ray.get(da.assemble.remote(q))
|
|
r_val = ray.get(r)
|
|
self.assertTrue(r_val.shape == (K, shape[1]))
|
|
assert_equal(r_val, np.triu(r_val))
|
|
assert_almost_equal(x_val, np.dot(q_val, r_val))
|
|
assert_almost_equal(np.dot(q_val.T, q_val), np.eye(K))
|
|
|
|
# test da.linalg.modified_lu
|
|
def test_modified_lu(d1, d2):
|
|
print("testing dist_modified_lu with d1 = " + str(d1) + ", d2 = " + str(d2))
|
|
assert d1 >= d2
|
|
k = min(d1, d2)
|
|
m = ra.random.normal.remote([d1, d2])
|
|
q, r = ra.linalg.qr.remote(m)
|
|
l, u, s = da.linalg.modified_lu.remote(da.numpy_to_dist.remote(q))
|
|
q_val = ray.get(q)
|
|
r_val = ray.get(r)
|
|
l_val = ray.get(da.assemble.remote(l))
|
|
u_val = ray.get(u)
|
|
s_val = ray.get(s)
|
|
s_mat = np.zeros((d1, d2))
|
|
for i in range(len(s_val)):
|
|
s_mat[i, i] = s_val[i]
|
|
assert_almost_equal(q_val - s_mat, np.dot(l_val, u_val)) # check that q - s = l * u
|
|
assert_equal(np.triu(u_val), u_val) # check that u is upper triangular
|
|
assert_equal(np.tril(l_val), l_val) # check that l is lower triangular
|
|
|
|
for d1, d2 in [(100, 100), (99, 98), (7, 5), (7, 7), (20, 7), (20, 10)]:
|
|
test_modified_lu(d1, d2)
|
|
|
|
# test dist_tsqr_hr
|
|
def test_dist_tsqr_hr(d1, d2):
|
|
print("testing dist_tsqr_hr with d1 = " + str(d1) + ", d2 = " + str(d2))
|
|
a = da.random.normal.remote([d1, d2])
|
|
y, t, y_top, r = da.linalg.tsqr_hr.remote(a)
|
|
a_val = ray.get(da.assemble.remote(a))
|
|
y_val = ray.get(da.assemble.remote(y))
|
|
t_val = ray.get(t)
|
|
y_top_val = ray.get(y_top)
|
|
r_val = ray.get(r)
|
|
tall_eye = np.zeros((d1, min(d1, d2)))
|
|
np.fill_diagonal(tall_eye, 1)
|
|
q = tall_eye - np.dot(y_val, np.dot(t_val, y_top_val.T))
|
|
assert_almost_equal(np.dot(q.T, q), np.eye(min(d1, d2))) # check that q.T * q = I
|
|
assert_almost_equal(np.dot(q, r_val), a_val) # check that a = (I - y * t * y_top.T) * r
|
|
|
|
for d1, d2 in [(123, da.BLOCK_SIZE), (7, da.BLOCK_SIZE), (da.BLOCK_SIZE, da.BLOCK_SIZE), (da.BLOCK_SIZE, 7), (10 * da.BLOCK_SIZE, da.BLOCK_SIZE)]:
|
|
test_dist_tsqr_hr(d1, d2)
|
|
|
|
def test_dist_qr(d1, d2):
|
|
print("testing qr with d1 = {}, and d2 = {}.".format(d1, d2))
|
|
a = da.random.normal.remote([d1, d2])
|
|
K = min(d1, d2)
|
|
q, r = da.linalg.qr.remote(a)
|
|
a_val = ray.get(da.assemble.remote(a))
|
|
q_val = ray.get(da.assemble.remote(q))
|
|
r_val = ray.get(da.assemble.remote(r))
|
|
self.assertEqual(q_val.shape, (d1, K))
|
|
self.assertEqual(r_val.shape, (K, d2))
|
|
assert_almost_equal(np.dot(q_val.T, q_val), np.eye(K))
|
|
assert_equal(r_val, np.triu(r_val))
|
|
assert_almost_equal(a_val, np.dot(q_val, r_val))
|
|
|
|
for d1, d2 in [(123, da.BLOCK_SIZE), (7, da.BLOCK_SIZE), (da.BLOCK_SIZE, da.BLOCK_SIZE), (da.BLOCK_SIZE, 7), (13, 21), (34, 35), (8, 7)]:
|
|
test_dist_qr(d1, d2)
|
|
test_dist_qr(d2, d1)
|
|
for _ in range(20):
|
|
d1 = np.random.randint(1, 35)
|
|
d2 = np.random.randint(1, 35)
|
|
test_dist_qr(d1, d2)
|
|
|
|
ray.worker.cleanup()
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main(verbosity=2)
|