mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
228 lines
8.8 KiB
Python
228 lines
8.8 KiB
Python
"""
|
|
Simple Q-Learning
|
|
=================
|
|
|
|
This module provides a basic implementation of the DQN algorithm without any
|
|
optimizations.
|
|
|
|
This file defines the distributed Trainer class for the Simple Q algorithm.
|
|
See `simple_q_[tf|torch]_policy.py` for the definition of the policy loss.
|
|
"""
|
|
|
|
import logging
|
|
from typing import Optional, Type
|
|
|
|
from ray.rllib.agents.dqn.simple_q_tf_policy import SimpleQTFPolicy
|
|
from ray.rllib.agents.dqn.simple_q_torch_policy import SimpleQTorchPolicy
|
|
from ray.rllib.agents.trainer import Trainer, with_common_config
|
|
from ray.rllib.evaluation.worker_set import WorkerSet
|
|
from ray.rllib.execution.concurrency_ops import Concurrently
|
|
from ray.rllib.execution.metric_ops import StandardMetricsReporting
|
|
from ray.rllib.execution.replay_ops import Replay, StoreToReplayBuffer
|
|
from ray.rllib.execution.rollout_ops import ParallelRollouts
|
|
from ray.rllib.execution.train_ops import MultiGPUTrainOneStep, TrainOneStep, \
|
|
UpdateTargetNetwork
|
|
from ray.rllib.policy.policy import Policy
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.deprecation import DEPRECATED_VALUE
|
|
from ray.rllib.utils.typing import TrainerConfigDict
|
|
from ray.util.iter import LocalIterator
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# yapf: disable
|
|
# __sphinx_doc_begin__
|
|
DEFAULT_CONFIG = with_common_config({
|
|
# === Exploration Settings ===
|
|
"exploration_config": {
|
|
# The Exploration class to use.
|
|
"type": "EpsilonGreedy",
|
|
# Config for the Exploration class' constructor:
|
|
"initial_epsilon": 1.0,
|
|
"final_epsilon": 0.02,
|
|
"epsilon_timesteps": 10000, # Timesteps over which to anneal epsilon.
|
|
|
|
# For soft_q, use:
|
|
# "exploration_config" = {
|
|
# "type": "SoftQ"
|
|
# "temperature": [float, e.g. 1.0]
|
|
# }
|
|
},
|
|
# Switch to greedy actions in evaluation workers.
|
|
"evaluation_config": {
|
|
"explore": False,
|
|
},
|
|
|
|
# Minimum env steps to optimize for per train call. This value does
|
|
# not affect learning, only the length of iterations.
|
|
"timesteps_per_iteration": 1000,
|
|
# Update the target network every `target_network_update_freq` steps.
|
|
"target_network_update_freq": 500,
|
|
|
|
# === Replay buffer ===
|
|
# Size of the replay buffer. Note that if async_updates is set, then
|
|
# each worker will have a replay buffer of this size.
|
|
"buffer_size": DEPRECATED_VALUE,
|
|
"replay_buffer_config": {
|
|
"type": "MultiAgentReplayBuffer",
|
|
"capacity": 50000,
|
|
},
|
|
# Set this to True, if you want the contents of your buffer(s) to be
|
|
# stored in any saved checkpoints as well.
|
|
# Warnings will be created if:
|
|
# - This is True AND restoring from a checkpoint that contains no buffer
|
|
# data.
|
|
# - This is False AND restoring from a checkpoint that does contain
|
|
# buffer data.
|
|
"store_buffer_in_checkpoints": False,
|
|
# The number of contiguous environment steps to replay at once. This may
|
|
# be set to greater than 1 to support recurrent models.
|
|
"replay_sequence_length": 1,
|
|
|
|
# === Optimization ===
|
|
# Learning rate for adam optimizer
|
|
"lr": 5e-4,
|
|
# Learning rate schedule
|
|
# In the format of [[timestep, value], [timestep, value], ...]
|
|
# A schedule should normally start from timestep 0.
|
|
"lr_schedule": None,
|
|
# Adam epsilon hyper parameter
|
|
"adam_epsilon": 1e-8,
|
|
# If not None, clip gradients during optimization at this value
|
|
"grad_clip": 40,
|
|
# How many steps of the model to sample before learning starts.
|
|
"learning_starts": 1000,
|
|
# Update the replay buffer with this many samples at once. Note that
|
|
# this setting applies per-worker if num_workers > 1.
|
|
"rollout_fragment_length": 4,
|
|
# Size of a batch sampled from replay buffer for training. Note that
|
|
# if async_updates is set, then each worker returns gradients for a
|
|
# batch of this size.
|
|
"train_batch_size": 32,
|
|
|
|
# === Parallelism ===
|
|
# Number of workers for collecting samples with. This only makes sense
|
|
# to increase if your environment is particularly slow to sample, or if
|
|
# you"re using the Async or Ape-X optimizers.
|
|
"num_workers": 0,
|
|
# Prevent iterations from going lower than this time span.
|
|
"min_iter_time_s": 1,
|
|
})
|
|
# __sphinx_doc_end__
|
|
# yapf: enable
|
|
|
|
|
|
# TODO: Move into SimpleQ once all OffPolicyTrainers have been converted to
|
|
# sub-classing Trainer (instead of using `build_trainer`).
|
|
def validate_config(config: TrainerConfigDict) -> None:
|
|
"""Checks and updates the config based on settings.
|
|
|
|
Rewrites rollout_fragment_length to take into account n_step
|
|
truncation.
|
|
"""
|
|
if config["exploration_config"]["type"] == "ParameterNoise":
|
|
if config["batch_mode"] != "complete_episodes":
|
|
logger.warning(
|
|
"ParameterNoise Exploration requires `batch_mode` to be "
|
|
"'complete_episodes'. Setting batch_mode="
|
|
"complete_episodes.")
|
|
config["batch_mode"] = "complete_episodes"
|
|
if config.get("noisy", False):
|
|
raise ValueError(
|
|
"ParameterNoise Exploration and `noisy` network cannot be"
|
|
" used at the same time!")
|
|
|
|
# Update effective batch size to include n-step
|
|
adjusted_batch_size = max(config["rollout_fragment_length"],
|
|
config.get("n_step", 1))
|
|
config["rollout_fragment_length"] = adjusted_batch_size
|
|
|
|
if config.get("prioritized_replay"):
|
|
if config["multiagent"]["replay_mode"] == "lockstep":
|
|
raise ValueError("Prioritized replay is not supported when "
|
|
"replay_mode=lockstep.")
|
|
elif config.get("replay_sequence_length", 0) > 1:
|
|
raise ValueError("Prioritized replay is not supported when "
|
|
"replay_sequence_length > 1.")
|
|
else:
|
|
if config.get("worker_side_prioritization"):
|
|
raise ValueError(
|
|
"Worker side prioritization is not supported when "
|
|
"prioritized_replay=False.")
|
|
|
|
# Multi-agent mode and multi-GPU optimizer.
|
|
if config["multiagent"]["policies"] and \
|
|
not config["simple_optimizer"]:
|
|
logger.info(
|
|
"In multi-agent mode, policies will be optimized sequentially"
|
|
" by the multi-GPU optimizer. Consider setting "
|
|
"simple_optimizer=True if this doesn't work for you.")
|
|
|
|
|
|
# TODO: Move into SimpleQ once all OffPolicyTrainers have been converted to
|
|
# sub-classing Trainer (instead of using `build_trainer`).
|
|
def execution_plan(workers: WorkerSet, config: TrainerConfigDict,
|
|
**kwargs) -> LocalIterator[dict]:
|
|
assert "local_replay_buffer" in kwargs, (
|
|
"GenericOffPolicy execution plan requires a local replay buffer.")
|
|
|
|
local_replay_buffer = kwargs["local_replay_buffer"]
|
|
|
|
rollouts = ParallelRollouts(workers, mode="bulk_sync")
|
|
|
|
# (1) Generate rollouts and store them in our local replay buffer.
|
|
store_op = rollouts.for_each(
|
|
StoreToReplayBuffer(local_buffer=local_replay_buffer))
|
|
|
|
if config["simple_optimizer"]:
|
|
train_step_op = TrainOneStep(workers)
|
|
else:
|
|
train_step_op = MultiGPUTrainOneStep(
|
|
workers=workers,
|
|
sgd_minibatch_size=config["train_batch_size"],
|
|
num_sgd_iter=1,
|
|
num_gpus=config["num_gpus"],
|
|
shuffle_sequences=True,
|
|
_fake_gpus=config["_fake_gpus"],
|
|
framework=config.get("framework"))
|
|
|
|
# (2) Read and train on experiences from the replay buffer.
|
|
replay_op = Replay(local_buffer=local_replay_buffer) \
|
|
.for_each(train_step_op) \
|
|
.for_each(UpdateTargetNetwork(
|
|
workers, config["target_network_update_freq"]))
|
|
|
|
# Alternate deterministically between (1) and (2).
|
|
train_op = Concurrently(
|
|
[store_op, replay_op], mode="round_robin", output_indexes=[1])
|
|
|
|
return StandardMetricsReporting(train_op, workers, config)
|
|
|
|
|
|
class SimpleQTrainer(Trainer):
|
|
@classmethod
|
|
@override(Trainer)
|
|
def get_default_config(cls) -> TrainerConfigDict:
|
|
return DEFAULT_CONFIG
|
|
|
|
# TODO: Move GenericOffPolicyTraier's validate_config in here and
|
|
# use SimpleQ as base for all off-policy trainers.
|
|
@override(Trainer)
|
|
def validate_config(self, config: TrainerConfigDict) -> None:
|
|
super().validate_config(config)
|
|
validate_config(config)
|
|
|
|
@override(Trainer)
|
|
def get_default_policy_class(
|
|
self, config: TrainerConfigDict) -> Optional[Type[Policy]]:
|
|
if config["framework"] == "torch":
|
|
return SimpleQTorchPolicy
|
|
else:
|
|
return SimpleQTFPolicy
|
|
|
|
# TODO: Move GenericOffPolicyTraier's execution_plan in here and
|
|
# use SimpleQ as base for all off-policy trainers.
|
|
@staticmethod
|
|
@override(Trainer)
|
|
def execution_plan(workers, config, **kwargs):
|
|
return execution_plan(workers, config, **kwargs)
|