ray/doc/source/index.rst
Richard Liaw 75e6775b36
[docs] Make Contributions/Building pages more prominent (#9054)
Co-authored-by: Edward Oakes <ed.nmi.oakes@gmail.com>
2020-06-25 12:38:12 -07:00

214 lines
7.1 KiB
ReStructuredText
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

What is Ray?
============
.. include:: ray-overview/basics.rst
Getting Started with Ray
------------------------
Check out :ref:`gentle-intro` to learn more about Ray and its ecosystem of libraries that enable things like distributed hyperparameter tuning,
reinforcement learning, and distributed training.
Ray uses Tasks (functions) and Actors (Classes) to allow you to parallelize your Python code:
.. code-block:: python
# First, run `pip install ray`.
import ray
ray.init()
@ray.remote
def f(x):
return x * x
futures = [f.remote(i) for i in range(4)]
print(ray.get(futures)) # [0, 1, 4, 9]
@ray.remote
class Counter(object):
def __init__(self):
self.n = 0
def increment(self):
self.n += 1
def read(self):
return self.n
counters = [Counter.remote() for i in range(4)]
[c.increment.remote() for c in counters]
futures = [c.read.remote() for c in counters]
print(ray.get(futures)) # [1, 1, 1, 1]
You can also get started by visiting our `Tutorials <https://github.com/ray-project/tutorial>`_. For the latest wheels (nightlies), see the `installation page <installation.html>`__.
Getting Involved
================
.. include:: ray-overview/involvement.rst
If you're interested in contributing to Ray, visit our page on :ref:`Getting Involved <getting-involved>` to read about the contribution process and see what you can work on!
More Information
================
Here are some talks, papers, and press coverage involving Ray and its libraries. Please raise an issue if any of the below links are broken, or if you'd like to add your own talk!
Blog and Press
--------------
- `Modern Parallel and Distributed Python: A Quick Tutorial on Ray <https://towardsdatascience.com/modern-parallel-and-distributed-python-a-quick-tutorial-on-ray-99f8d70369b8>`_
- `Why Every Python Developer Will Love Ray <https://www.datanami.com/2019/11/05/why-every-python-developer-will-love-ray/>`_
- `Ray: A Distributed System for AI (BAIR) <http://bair.berkeley.edu/blog/2018/01/09/ray/>`_
- `10x Faster Parallel Python Without Python Multiprocessing <https://towardsdatascience.com/10x-faster-parallel-python-without-python-multiprocessing-e5017c93cce1>`_
- `Implementing A Parameter Server in 15 Lines of Python with Ray <https://ray-project.github.io/2018/07/15/parameter-server-in-fifteen-lines.html>`_
- `Ray Distributed AI Framework Curriculum <https://rise.cs.berkeley.edu/blog/ray-intel-curriculum/>`_
- `RayOnSpark: Running Emerging AI Applications on Big Data Clusters with Ray and Analytics Zoo <https://medium.com/riselab/rayonspark-running-emerging-ai-applications-on-big-data-clusters-with-ray-and-analytics-zoo-923e0136ed6a>`_
- `First user tips for Ray <https://rise.cs.berkeley.edu/blog/ray-tips-for-first-time-users/>`_
- [Tune] `Tune: a Python library for fast hyperparameter tuning at any scale <https://towardsdatascience.com/fast-hyperparameter-tuning-at-scale-d428223b081c>`_
- [Tune] `Cutting edge hyperparameter tuning with Ray Tune <https://medium.com/riselab/cutting-edge-hyperparameter-tuning-with-ray-tune-be6c0447afdf>`_
- [RLlib] `New Library Targets High Speed Reinforcement Learning <https://www.datanami.com/2018/02/01/rays-new-library-targets-high-speed-reinforcement-learning/>`_
- [RLlib] `Scaling Multi Agent Reinforcement Learning <http://bair.berkeley.edu/blog/2018/12/12/rllib/>`_
- [RLlib] `Functional RL with Keras and Tensorflow Eager <https://bair.berkeley.edu/blog/2019/10/14/functional-rl/>`_
- [Modin] `How to Speed up Pandas by 4x with one line of code <https://www.kdnuggets.com/2019/11/speed-up-pandas-4x.html>`_
- [Modin] `Quick Tip Speed up Pandas using Modin <https://pythondata.com/quick-tip-speed-up-pandas-using-modin/>`_
- `Ray Blog`_
.. _`Ray Blog`: https://ray-project.github.io/
Talks (Videos)
--------------
- `Programming at any Scale with Ray | SF Python Meetup Sept 2019 <https://www.youtube.com/watch?v=LfpHyIXBhlE>`_
- `Ray for Reinforcement Learning | Data Council 2019 <https://www.youtube.com/watch?v=Ayc0ca150HI>`_
- `Scaling Interactive Pandas Workflows with Modin <https://www.youtube.com/watch?v=-HjLd_3ahCw>`_
- `Ray: A Distributed Execution Framework for AI | SciPy 2018 <https://www.youtube.com/watch?v=D_oz7E4v-U0>`_
- `Ray: A Cluster Computing Engine for Reinforcement Learning Applications | Spark Summit <https://www.youtube.com/watch?v=xadZRRB_TeI>`_
- `RLlib: Ray Reinforcement Learning Library | RISECamp 2018 <https://www.youtube.com/watch?v=eeRGORQthaQ>`_
- `Enabling Composition in Distributed Reinforcement Learning | Spark Summit 2018 <https://www.youtube.com/watch?v=jAEPqjkjth4>`_
- `Tune: Distributed Hyperparameter Search | RISECamp 2018 <https://www.youtube.com/watch?v=38Yd_dXW51Q>`_
Slides
------
- `Talk given at UC Berkeley DS100 <https://docs.google.com/presentation/d/1sF5T_ePR9R6fAi2R6uxehHzXuieme63O2n_5i9m7mVE/edit?usp=sharing>`_
- `Talk given in October 2019 <https://docs.google.com/presentation/d/13K0JsogYQX3gUCGhmQ1PQ8HILwEDFysnq0cI2b88XbU/edit?usp=sharing>`_
- [Tune] `Talk given at RISECamp 2019 <https://docs.google.com/presentation/d/1v3IldXWrFNMK-vuONlSdEuM82fuGTrNUDuwtfx4axsQ/edit?usp=sharing>`_
Academic Papers
---------------
- `Ray paper`_
- `Ray HotOS paper`_
- `RLlib paper`_
- `Tune paper`_
.. _`Ray paper`: https://arxiv.org/abs/1712.05889
.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924
.. _`RLlib paper`: https://arxiv.org/abs/1712.09381
.. _`Tune paper`: https://arxiv.org/abs/1807.05118
.. toctree::
:hidden:
:maxdepth: -1
:caption: Overview of Ray
ray-overview/index.rst
installation.rst
.. toctree::
:hidden:
:maxdepth: -1
:caption: Ray Core
walkthrough.rst
using-ray.rst
configure.rst
ray-dashboard.rst
cluster-index.rst
Tutorial and Examples <auto_examples/overview.rst>
package-ref.rst
.. toctree::
:hidden:
:maxdepth: -1
:caption: Ray Serve
serve/index.rst
serve/key-concepts.rst
serve/tutorials/index.rst
serve/deployment.rst
serve/advanced.rst
serve/package-ref.rst
.. toctree::
:hidden:
:maxdepth: -1
:caption: Ray Tune
tune.rst
Tutorials, Guides, Examples <tune/tutorials/overview.rst>
tune/api_docs/overview.rst
tune-contrib.rst
.. toctree::
:hidden:
:maxdepth: -1
:caption: RLlib
rllib.rst
rllib-toc.rst
rllib-training.rst
rllib-env.rst
rllib-models.rst
rllib-algorithms.rst
rllib-offline.rst
rllib-concepts.rst
rllib-examples.rst
rllib-package-ref.rst
rllib-dev.rst
.. toctree::
:hidden:
:maxdepth: -1
:caption: Ray SGD
raysgd/raysgd.rst
raysgd/raysgd_pytorch.rst
raysgd/raysgd_tensorflow.rst
raysgd/raysgd_dataset.rst
raysgd/raysgd_ref.rst
.. toctree::
:hidden:
:maxdepth: -1
:caption: Other Libraries
multiprocessing.rst
joblib.rst
iter.rst
pandas_on_ray.rst
.. toctree::
:hidden:
:maxdepth: -1
:caption: Contributing
getting-involved.rst
.. toctree::
:hidden:
:maxdepth: -1
:caption: Development and Ray Internals
development.rst
debugging.rst
profiling.rst
fault-tolerance.rst