ray/rllib/tuned_examples/pendulum-ddpg.yaml
Eric Liang dd70720578
[rllib] Rename sample_batch_size => rollout_fragment_length (#7503)
* bulk rename

* deprecation warn

* update doc

* update fig

* line length

* rename

* make pytest comptaible

* fix test

* fi sys

* rename

* wip

* fix more

* lint

* update svg

* comments

* lint

* fix use of batch steps
2020-03-14 12:05:04 -07:00

57 lines
1.5 KiB
YAML

# This configuration can expect to reach -160 reward in 10k-20k timesteps
pendulum-ddpg:
env: Pendulum-v0
run: DDPG
stop:
episode_reward_mean: -160
timesteps_total: 100000
config:
# === Model ===
actor_hiddens: [64, 64]
critic_hiddens: [64, 64]
n_step: 1
model: {}
gamma: 0.99
env_config: {}
# === Exploration ===
exploration_config:
type: "OrnsteinUhlenbeckNoise"
scale_timesteps: 10000
initial_scale: 1.0,
final_scale: 0.02
ou_base_scale: 0.1
ou_theta: 0.15
ou_sigma: 0.2
timesteps_per_iteration: 600
target_network_update_freq: 0
tau: 0.001
# === Replay buffer ===
buffer_size: 10000
prioritized_replay: True
prioritized_replay_alpha: 0.6
prioritized_replay_beta: 0.4
prioritized_replay_eps: 0.000001
clip_rewards: False
# === Optimization ===
actor_lr: 0.001
critic_lr: 0.001
use_huber: True
huber_threshold: 1.0
l2_reg: 0.000001
learning_starts: 500
rollout_fragment_length: 1
train_batch_size: 64
# === Parallelism ===
num_workers: 0
num_gpus_per_worker: 0
#per_worker_exploration: False
worker_side_prioritization: False
# === Evaluation ===
evaluation_interval: 5
evaluation_num_episodes: 10