ray/rllib/contrib/bandits/examples/simple_context_bandit.py
2020-03-26 13:41:16 -07:00

47 lines
1.3 KiB
Python

"""A very simple contextual bandit example with 3 arms."""
import argparse
import random
import numpy as np
import gym
from gym.spaces import Discrete, Box
from ray import tune
parser = argparse.ArgumentParser()
parser.add_argument("--stop-at-reward", type=float, default=10)
parser.add_argument("--run", type=str, default="contrib/LinUCB")
class SimpleContextualBandit(gym.Env):
def __init__(self, config=None):
self.action_space = Discrete(3)
self.observation_space = Box(low=-1., high=1., shape=(2, ))
self.cur_context = None
def reset(self):
self.cur_context = random.choice([-1., 1.])
return np.array([self.cur_context, -self.cur_context])
def step(self, action):
rewards_for_context = {
-1.: [-10, 0, 10],
1.: [10, 0, -10],
}
reward = rewards_for_context[self.cur_context][action]
return (np.array([-self.cur_context, self.cur_context]), reward, True,
{
"regret": 10 - reward
})
if __name__ == "__main__":
args = parser.parse_args()
tune.run(
args.run,
stop={
"episode_reward_mean": args.stop_at_reward,
},
config={
"env": SimpleContextualBandit,
})