mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00

This PR updates the Ray AIR/Tune ipynb examples to use the Tuner() API instead of tune.run(). Signed-off-by: Kai Fricke <kai@anyscale.com> Signed-off-by: Richard Liaw <rliaw@berkeley.edu> Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com> Signed-off-by: Kai Fricke <coding@kaifricke.com> Co-authored-by: Richard Liaw <rliaw@berkeley.edu> Co-authored-by: Xiaowei Jiang <xwjiang2010@gmail.com>
1952 lines
81 KiB
Text
1952 lines
81 KiB
Text
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "a97c49a9",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Running Tune experiments with ZOOpt\n",
|
||
"\n",
|
||
"In this tutorial we introduce ZOOpt, while running a simple Ray Tune experiment. Tune’s Search Algorithms integrate with ZOOpt and, as a result, allow you to seamlessly scale up a ZOOpt optimization process - without sacrificing performance.\n",
|
||
"\n",
|
||
"Zeroth-order optimization (ZOOpt) does not rely on the gradient of the objective function, but instead, learns from samples of the search space. It is suitable for optimizing functions that are nondifferentiable, with many local minima, or even unknown but only testable. Therefore, zeroth-order optimization is commonly referred to as \"derivative-free optimization\" and \"black-box optimization\". In this example we minimize a simple objective to briefly demonstrate the usage of ZOOpt with Ray Tune via `ZOOptSearch`. It's useful to keep in mind that despite the emphasis on machine learning experiments, Ray Tune optimizes any implicit or explicit objective. Here we assume `zoopt==0.4.1` library is installed. To learn more, please refer to the [ZOOpt website](https://github.com/polixir/ZOOpt)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "58fee596",
|
||
"metadata": {
|
||
"tags": [
|
||
"remove-cell"
|
||
]
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Requirement already satisfied: zoopt==0.4.1 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (0.4.1)\n",
|
||
"Requirement already satisfied: matplotlib in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from zoopt==0.4.1) (3.5.0)\n",
|
||
"Requirement already satisfied: numpy in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from zoopt==0.4.1) (1.21.6)\n",
|
||
"Requirement already satisfied: cycler>=0.10 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (0.11.0)\n",
|
||
"Requirement already satisfied: python-dateutil>=2.7 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (2.8.2)\n",
|
||
"Requirement already satisfied: fonttools>=4.22.0 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (4.28.2)\n",
|
||
"Requirement already satisfied: packaging>=20.0 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (21.3)\n",
|
||
"Requirement already satisfied: pillow>=6.2.0 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (9.1.0)\n",
|
||
"Requirement already satisfied: setuptools-scm>=4 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (6.3.2)\n",
|
||
"Requirement already satisfied: kiwisolver>=1.0.1 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (1.3.2)\n",
|
||
"Requirement already satisfied: pyparsing>=2.2.1 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from matplotlib->zoopt==0.4.1) (2.4.7)\n",
|
||
"Requirement already satisfied: six>=1.5 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from python-dateutil>=2.7->matplotlib->zoopt==0.4.1) (1.16.0)\n",
|
||
"Requirement already satisfied: setuptools in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from setuptools-scm>=4->matplotlib->zoopt==0.4.1) (59.5.0)\n",
|
||
"Requirement already satisfied: tomli>=1.0.0 in /Users/kai/.pyenv/versions/3.7.7/lib/python3.7/site-packages (from setuptools-scm>=4->matplotlib->zoopt==0.4.1) (1.2.3)\n",
|
||
"\u001b[33mWARNING: There was an error checking the latest version of pip.\u001b[0m\u001b[33m\n",
|
||
"\u001b[0m"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# !pip install ray[tune]\n",
|
||
"!pip install zoopt==0.4.1"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "a9c8a34b",
|
||
"metadata": {},
|
||
"source": [
|
||
"Click below to see all the imports we need for this example.\n",
|
||
"You can also launch directly into a Binder instance to run this notebook yourself.\n",
|
||
"Just click on the rocket symbol at the top of the navigation."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "d05017fe",
|
||
"metadata": {
|
||
"tags": [
|
||
"hide-input"
|
||
]
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"import time\n",
|
||
"\n",
|
||
"import ray\n",
|
||
"from ray import tune\n",
|
||
"from ray.air import session\n",
|
||
"from ray.tune.search.zoopt import ZOOptSearch\n",
|
||
"from zoopt import ValueType"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "5a41255a",
|
||
"metadata": {},
|
||
"source": [
|
||
"Let's start by defining a simple evaluation function.\n",
|
||
"We artificially sleep for a bit (`0.1` seconds) to simulate a long-running ML experiment.\n",
|
||
"This setup assumes that we're running multiple `step`s of an experiment and try to tune two hyperparameters,\n",
|
||
"namely `width` and `height`, and `activation`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "61db0806",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def evaluate(step, width, height):\n",
|
||
" time.sleep(0.1)\n",
|
||
" return (0.1 + width * step / 100) ** (-1) + height * 0.1"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "a979f791",
|
||
"metadata": {},
|
||
"source": [
|
||
"Next, our ``objective`` function takes a Tune ``config``, evaluates the `score` of your experiment in a training loop,\n",
|
||
"and uses `session.report` to report the `score` back to Tune."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "3b451a2c",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def objective(config):\n",
|
||
" for step in range(config[\"steps\"]):\n",
|
||
" score = evaluate(step, config[\"width\"], config[\"height\"])\n",
|
||
" session.report({\"iterations\": step, \"mean_loss\": score})"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "ad4f9faf",
|
||
"metadata": {
|
||
"lines_to_next_cell": 0,
|
||
"tags": [
|
||
"remove-cell"
|
||
]
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
" <div style=\"margin-left: 50px;display: flex;flex-direction: row;align-items: center\">\n",
|
||
" <h3 style=\"color: var(--jp-ui-font-color0)\">Ray</h3>\n",
|
||
" <svg version=\"1.1\" id=\"ray\" width=\"3em\" viewBox=\"0 0 144.5 144.6\" style=\"margin-left: 3em;margin-right: 3em\">\n",
|
||
" <g id=\"layer-1\">\n",
|
||
" <path fill=\"#00a2e9\" class=\"st0\" d=\"M97.3,77.2c-3.8-1.1-6.2,0.9-8.3,5.1c-3.5,6.8-9.9,9.9-17.4,9.6S58,88.1,54.8,81.2c-1.4-3-3-4-6.3-4.1\n",
|
||
" c-5.6-0.1-9.9,0.1-13.1,6.4c-3.8,7.6-13.6,10.2-21.8,7.6C5.2,88.4-0.4,80.5,0,71.7c0.1-8.4,5.7-15.8,13.8-18.2\n",
|
||
" c8.4-2.6,17.5,0.7,22.3,8c1.3,1.9,1.3,5.2,3.6,5.6c3.9,0.6,8,0.2,12,0.2c1.8,0,1.9-1.6,2.4-2.8c3.5-7.8,9.7-11.8,18-11.9\n",
|
||
" c8.2-0.1,14.4,3.9,17.8,11.4c1.3,2.8,2.9,3.6,5.7,3.3c1-0.1,2,0.1,3,0c2.8-0.5,6.4,1.7,8.1-2.7s-2.3-5.5-4.1-7.5\n",
|
||
" c-5.1-5.7-10.9-10.8-16.1-16.3C84,38,81.9,37.1,78,38.3C66.7,42,56.2,35.7,53,24.1C50.3,14,57.3,2.8,67.7,0.5\n",
|
||
" C78.4-2,89,4.7,91.5,15.3c0.1,0.3,0.1,0.5,0.2,0.8c0.7,3.4,0.7,6.9-0.8,9.8c-1.7,3.2-0.8,5,1.5,7.2c6.7,6.5,13.3,13,19.8,19.7\n",
|
||
" c1.8,1.8,3,2.1,5.5,1.2c9.1-3.4,17.9-0.6,23.4,7c4.8,6.9,4.6,16.1-0.4,22.9c-5.4,7.2-14.2,9.9-23.1,6.5c-2.3-0.9-3.5-0.6-5.1,1.1\n",
|
||
" c-6.7,6.9-13.6,13.7-20.5,20.4c-1.8,1.8-2.5,3.2-1.4,5.9c3.5,8.7,0.3,18.6-7.7,23.6c-7.9,5-18.2,3.8-24.8-2.9\n",
|
||
" c-6.4-6.4-7.4-16.2-2.5-24.3c4.9-7.8,14.5-11,23.1-7.8c3,1.1,4.7,0.5,6.9-1.7C91.7,98.4,98,92.3,104.2,86c1.6-1.6,4.1-2.7,2.6-6.2\n",
|
||
" c-1.4-3.3-3.8-2.5-6.2-2.6C99.8,77.2,98.9,77.2,97.3,77.2z M72.1,29.7c5.5,0.1,9.9-4.3,10-9.8c0-0.1,0-0.2,0-0.3\n",
|
||
" C81.8,14,77,9.8,71.5,10.2c-5,0.3-9,4.2-9.3,9.2c-0.2,5.5,4,10.1,9.5,10.3C71.8,29.7,72,29.7,72.1,29.7z M72.3,62.3\n",
|
||
" c-5.4-0.1-9.9,4.2-10.1,9.7c0,0.2,0,0.3,0,0.5c0.2,5.4,4.5,9.7,9.9,10c5.1,0.1,9.9-4.7,10.1-9.8c0.2-5.5-4-10-9.5-10.3\n",
|
||
" C72.6,62.3,72.4,62.3,72.3,62.3z M115,72.5c0.1,5.4,4.5,9.7,9.8,9.9c5.6-0.2,10-4.8,10-10.4c-0.2-5.4-4.6-9.7-10-9.7\n",
|
||
" c-5.3-0.1-9.8,4.2-9.9,9.5C115,72.1,115,72.3,115,72.5z M19.5,62.3c-5.4,0.1-9.8,4.4-10,9.8c-0.1,5.1,5.2,10.4,10.2,10.3\n",
|
||
" c5.6-0.2,10-4.9,9.8-10.5c-0.1-5.4-4.5-9.7-9.9-9.6C19.6,62.3,19.5,62.3,19.5,62.3z M71.8,134.6c5.9,0.2,10.3-3.9,10.4-9.6\n",
|
||
" c0.5-5.5-3.6-10.4-9.1-10.8c-5.5-0.5-10.4,3.6-10.8,9.1c0,0.5,0,0.9,0,1.4c-0.2,5.3,4,9.8,9.3,10\n",
|
||
" C71.6,134.6,71.7,134.6,71.8,134.6z\"/>\n",
|
||
" </g>\n",
|
||
" </svg>\n",
|
||
" <table>\n",
|
||
" <tr>\n",
|
||
" <td style=\"text-align: left\"><b>Python version:</b></td>\n",
|
||
" <td style=\"text-align: left\"><b>3.7.7</b></td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td style=\"text-align: left\"><b>Ray version:</b></td>\n",
|
||
" <td style=\"text-align: left\"><b> 3.0.0.dev0</b></td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <td style=\"text-align: left\"><b>Dashboard:</b></td>\n",
|
||
" <td style=\"text-align: left\"><b><a href=\"http://127.0.0.1:8266\" target=\"_blank\">http://127.0.0.1:8266</a></b></td>\n",
|
||
"</tr>\n",
|
||
"\n",
|
||
" </table>\n",
|
||
" </div>\n",
|
||
"</div>\n"
|
||
],
|
||
"text/plain": [
|
||
"RayContext(dashboard_url='127.0.0.1:8266', python_version='3.7.7', ray_version='3.0.0.dev0', ray_commit='{{RAY_COMMIT_SHA}}', address_info={'node_ip_address': '127.0.0.1', 'raylet_ip_address': '127.0.0.1', 'redis_address': None, 'object_store_address': '/tmp/ray/session_2022-07-22_15-35-29_724425_47582/sockets/plasma_store', 'raylet_socket_name': '/tmp/ray/session_2022-07-22_15-35-29_724425_47582/sockets/raylet', 'webui_url': '127.0.0.1:8266', 'session_dir': '/tmp/ray/session_2022-07-22_15-35-29_724425_47582', 'metrics_export_port': 63508, 'gcs_address': '127.0.0.1:65155', 'address': '127.0.0.1:65155', 'dashboard_agent_listen_port': 52365, 'node_id': 'cecb81f61b8504b3ccfcd881ed1c79c3b7d184be1ba13216cb7e3957'})"
|
||
]
|
||
},
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"ray.init(configure_logging=False)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "036e0085",
|
||
"metadata": {},
|
||
"source": [
|
||
"Next we define a search space. The critical assumption is that the optimal hyperparameters live within this space. Yet, if the space is very large, then those hyperparameters may be difficult to find in a short amount of time."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"id": "b28469ce",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"search_config = {\n",
|
||
" \"steps\": 100,\n",
|
||
" \"width\": tune.randint(0, 10),\n",
|
||
" \"height\": tune.quniform(-10, 10, 1e-2),\n",
|
||
" \"activation\": tune.choice([\"relu, tanh\"])\n",
|
||
"}"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "599b1ece",
|
||
"metadata": {},
|
||
"source": [
|
||
"The number of samples is the number of hyperparameter combinations that will be tried out. This Tune run is set to `1000` samples.\n",
|
||
"(you can decrease this if it takes too long on your machine)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"id": "94fcbc63",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"num_samples = 1000"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"id": "33f11052",
|
||
"metadata": {
|
||
"tags": [
|
||
"remove-cell"
|
||
]
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# If 1000 samples take too long, you can reduce this number.\n",
|
||
"# We override this number here for our smoke tests.\n",
|
||
"num_samples = 10"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "c5b47448",
|
||
"metadata": {},
|
||
"source": [
|
||
"Next we define the search algorithm built from `ZOOptSearch`, constrained to a maximum of `8` concurrent trials via ZOOpt's internal `\"parallel_num\"`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "22c15bc5",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"zoopt_config = {\n",
|
||
" \"parallel_num\": 8\n",
|
||
"}\n",
|
||
"algo = ZOOptSearch(\n",
|
||
" algo=\"Asracos\", # only supports ASRacos currently\n",
|
||
" budget=num_samples,\n",
|
||
" **zoopt_config,\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f5147bec",
|
||
"metadata": {},
|
||
"source": [
|
||
"Finally, we run the experiment to `\"min\"`imize the \"mean_loss\" of the `objective` by searching `search_config` via `algo`, `num_samples` times. This previous sentence is fully characterizes the search problem we aim to solve. With this in mind, notice how efficient it is to execute `tuner.fit()`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"id": "b51e7a31",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Function checkpointing is disabled. This may result in unexpected behavior when using checkpointing features or certain schedulers. To enable, set the train function arguments to be `func(config, checkpoint_dir=None)`.\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"== Status ==<br>Current time: 2022-07-22 15:36:05 (running for 00:00:29.94)<br>Memory usage on this node: 11.1/16.0 GiB<br>Using FIFO scheduling algorithm.<br>Resources requested: 0/16 CPUs, 0/0 GPUs, 0.0/5.39 GiB heap, 0.0/2.0 GiB objects<br>Current best trial: 963faf2a with mean_loss=-0.39843708609271516 and parameters={'steps': 100, 'width': 6, 'height': -5.64, 'activation': 'relu, tanh'}<br>Result logdir: /Users/kai/ray_results/objective_2022-07-22_15-35-34<br>Number of trials: 7/10 (7 TERMINATED)<br><table>\n",
|
||
"<thead>\n",
|
||
"<tr><th>Trial name </th><th>status </th><th>loc </th><th>activation </th><th style=\"text-align: right;\"> height</th><th style=\"text-align: right;\"> width</th><th style=\"text-align: right;\"> loss</th><th style=\"text-align: right;\"> iter</th><th style=\"text-align: right;\"> total time (s)</th><th style=\"text-align: right;\"> iterations</th><th style=\"text-align: right;\"> neg_mean_loss</th></tr>\n",
|
||
"</thead>\n",
|
||
"<tbody>\n",
|
||
"<tr><td>objective_8c72f588</td><td>TERMINATED</td><td>127.0.0.1:47662</td><td>relu, tanh </td><td style=\"text-align: right;\"> -3.94</td><td style=\"text-align: right;\"> 0</td><td style=\"text-align: right;\"> 9.606 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.9102</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> -9.606 </td></tr>\n",
|
||
"<tr><td>objective_8e2f11ae</td><td>TERMINATED</td><td>127.0.0.1:47667</td><td>relu, tanh </td><td style=\"text-align: right;\"> -0.68</td><td style=\"text-align: right;\"> 6</td><td style=\"text-align: right;\"> 0.0975629</td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.7479</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> -0.0975629</td></tr>\n",
|
||
"<tr><td>objective_8e30a596</td><td>TERMINATED</td><td>127.0.0.1:47668</td><td>relu, tanh </td><td style=\"text-align: right;\"> -5.84</td><td style=\"text-align: right;\"> 0</td><td style=\"text-align: right;\"> 9.416 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.7724</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> -9.416 </td></tr>\n",
|
||
"<tr><td>objective_8e32324e</td><td>TERMINATED</td><td>127.0.0.1:47669</td><td>relu, tanh </td><td style=\"text-align: right;\"> -2.15</td><td style=\"text-align: right;\"> 3</td><td style=\"text-align: right;\"> 0.110733 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.7684</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> -0.110733 </td></tr>\n",
|
||
"<tr><td>objective_963faf2a</td><td>TERMINATED</td><td>127.0.0.1:47689</td><td>relu, tanh </td><td style=\"text-align: right;\"> -5.64</td><td style=\"text-align: right;\"> 6</td><td style=\"text-align: right;\">-0.398437 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.8267</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> 0.398437 </td></tr>\n",
|
||
"<tr><td>objective_96417df0</td><td>TERMINATED</td><td>127.0.0.1:47690</td><td>relu, tanh </td><td style=\"text-align: right;\"> 2.84</td><td style=\"text-align: right;\"> 6</td><td style=\"text-align: right;\"> 0.449563 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.821 </td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> -0.449563 </td></tr>\n",
|
||
"<tr><td>objective_96435da0</td><td>TERMINATED</td><td>127.0.0.1:47691</td><td>relu, tanh </td><td style=\"text-align: right;\"> 2.6 </td><td style=\"text-align: right;\"> 6</td><td style=\"text-align: right;\"> 0.425563 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.7694</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> -0.425563 </td></tr>\n",
|
||
"</tbody>\n",
|
||
"</table><br><br>"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.HTML object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Result for objective_8c72f588:\n",
|
||
" date: 2022-07-22_15-35-38\n",
|
||
" done: false\n",
|
||
" experiment_id: 3eb9bcef55e341b0970abd6c1f97eda7\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 9.606\n",
|
||
" neg_mean_loss: -9.606\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47662\n",
|
||
" time_since_restore: 0.10410094261169434\n",
|
||
" time_this_iter_s: 0.10410094261169434\n",
|
||
" time_total_s: 0.10410094261169434\n",
|
||
" timestamp: 1658500538\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: 8c72f588\n",
|
||
" warmup_time: 0.003092050552368164\n",
|
||
" \n",
|
||
"Result for objective_8e30a596:\n",
|
||
" date: 2022-07-22_15-35-41\n",
|
||
" done: false\n",
|
||
" experiment_id: d58453075b71453ab615e10ae9713072\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 9.416\n",
|
||
" neg_mean_loss: -9.416\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47668\n",
|
||
" time_since_restore: 0.1051950454711914\n",
|
||
" time_this_iter_s: 0.1051950454711914\n",
|
||
" time_total_s: 0.1051950454711914\n",
|
||
" timestamp: 1658500541\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: 8e30a596\n",
|
||
" warmup_time: 0.004169940948486328\n",
|
||
" \n",
|
||
"Result for objective_8e32324e:\n",
|
||
" date: 2022-07-22_15-35-41\n",
|
||
" done: false\n",
|
||
" experiment_id: 22c7ba8baa2644479b661e6d91e5fae8\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 9.785\n",
|
||
" neg_mean_loss: -9.785\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47669\n",
|
||
" time_since_restore: 0.10500001907348633\n",
|
||
" time_this_iter_s: 0.10500001907348633\n",
|
||
" time_total_s: 0.10500001907348633\n",
|
||
" timestamp: 1658500541\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: 8e32324e\n",
|
||
" warmup_time: 0.004729032516479492\n",
|
||
" \n",
|
||
"Result for objective_8e2f11ae:\n",
|
||
" date: 2022-07-22_15-35-41\n",
|
||
" done: false\n",
|
||
" experiment_id: c4d325574058491c8af3a0c869f0ebe5\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 9.932\n",
|
||
" neg_mean_loss: -9.932\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47667\n",
|
||
" time_since_restore: 0.10310196876525879\n",
|
||
" time_this_iter_s: 0.10310196876525879\n",
|
||
" time_total_s: 0.10310196876525879\n",
|
||
" timestamp: 1658500541\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: 8e2f11ae\n",
|
||
" warmup_time: 0.0029730796813964844\n",
|
||
" \n",
|
||
"Result for objective_8c72f588:\n",
|
||
" date: 2022-07-22_15-35-43\n",
|
||
" done: false\n",
|
||
" experiment_id: 3eb9bcef55e341b0970abd6c1f97eda7\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 45\n",
|
||
" iterations_since_restore: 46\n",
|
||
" mean_loss: 9.606\n",
|
||
" neg_mean_loss: -9.606\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47662\n",
|
||
" time_since_restore: 5.112913131713867\n",
|
||
" time_this_iter_s: 0.10695910453796387\n",
|
||
" time_total_s: 5.112913131713867\n",
|
||
" timestamp: 1658500543\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 46\n",
|
||
" trial_id: 8c72f588\n",
|
||
" warmup_time: 0.003092050552368164\n",
|
||
" \n",
|
||
"Result for objective_8e30a596:\n",
|
||
" date: 2022-07-22_15-35-46\n",
|
||
" done: false\n",
|
||
" experiment_id: d58453075b71453ab615e10ae9713072\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 47\n",
|
||
" iterations_since_restore: 48\n",
|
||
" mean_loss: 9.416\n",
|
||
" neg_mean_loss: -9.416\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47668\n",
|
||
" time_since_restore: 5.1615166664123535\n",
|
||
" time_this_iter_s: 0.10595178604125977\n",
|
||
" time_total_s: 5.1615166664123535\n",
|
||
" timestamp: 1658500546\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 48\n",
|
||
" trial_id: 8e30a596\n",
|
||
" warmup_time: 0.004169940948486328\n",
|
||
" \n",
|
||
"Result for objective_8e2f11ae:\n",
|
||
" date: 2022-07-22_15-35-46\n",
|
||
" done: false\n",
|
||
" experiment_id: c4d325574058491c8af3a0c869f0ebe5\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 47\n",
|
||
" iterations_since_restore: 48\n",
|
||
" mean_loss: 0.2744657534246575\n",
|
||
" neg_mean_loss: -0.2744657534246575\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47667\n",
|
||
" time_since_restore: 5.1498119831085205\n",
|
||
" time_this_iter_s: 0.10741090774536133\n",
|
||
" time_total_s: 5.1498119831085205\n",
|
||
" timestamp: 1658500546\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 48\n",
|
||
" trial_id: 8e2f11ae\n",
|
||
" warmup_time: 0.0029730796813964844\n",
|
||
" \n",
|
||
"Result for objective_8e32324e:\n",
|
||
" date: 2022-07-22_15-35-46\n",
|
||
" done: false\n",
|
||
" experiment_id: 22c7ba8baa2644479b661e6d91e5fae8\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 47\n",
|
||
" iterations_since_restore: 48\n",
|
||
" mean_loss: 0.44725165562913916\n",
|
||
" neg_mean_loss: -0.44725165562913916\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47669\n",
|
||
" time_since_restore: 5.166383981704712\n",
|
||
" time_this_iter_s: 0.1064291000366211\n",
|
||
" time_total_s: 5.166383981704712\n",
|
||
" timestamp: 1658500546\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 48\n",
|
||
" trial_id: 8e32324e\n",
|
||
" warmup_time: 0.004729032516479492\n",
|
||
" \n",
|
||
"Result for objective_8c72f588:\n",
|
||
" date: 2022-07-22_15-35-48\n",
|
||
" done: false\n",
|
||
" experiment_id: 3eb9bcef55e341b0970abd6c1f97eda7\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 92\n",
|
||
" iterations_since_restore: 93\n",
|
||
" mean_loss: 9.606\n",
|
||
" neg_mean_loss: -9.606\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47662\n",
|
||
" time_since_restore: 10.156940937042236\n",
|
||
" time_this_iter_s: 0.10845208168029785\n",
|
||
" time_total_s: 10.156940937042236\n",
|
||
" timestamp: 1658500548\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 93\n",
|
||
" trial_id: 8c72f588\n",
|
||
" warmup_time: 0.003092050552368164\n",
|
||
" \n",
|
||
"Result for objective_8c72f588:\n",
|
||
" date: 2022-07-22_15-35-49\n",
|
||
" done: true\n",
|
||
" experiment_id: 3eb9bcef55e341b0970abd6c1f97eda7\n",
|
||
" experiment_tag: 1_activation=relu_tanh,height=-3.9400,steps=100,width=0\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: 9.606\n",
|
||
" neg_mean_loss: -9.606\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47662\n",
|
||
" time_since_restore: 10.910246133804321\n",
|
||
" time_this_iter_s: 0.1059122085571289\n",
|
||
" time_total_s: 10.910246133804321\n",
|
||
" timestamp: 1658500549\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: 8c72f588\n",
|
||
" warmup_time: 0.003092050552368164\n",
|
||
" \n",
|
||
"Result for objective_8e2f11ae:\n",
|
||
" date: 2022-07-22_15-35-51\n",
|
||
" done: false\n",
|
||
" experiment_id: c4d325574058491c8af3a0c869f0ebe5\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 94\n",
|
||
" iterations_since_restore: 95\n",
|
||
" mean_loss: 0.10621602787456447\n",
|
||
" neg_mean_loss: -0.10621602787456447\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47667\n",
|
||
" time_since_restore: 10.211436986923218\n",
|
||
" time_this_iter_s: 0.10804891586303711\n",
|
||
" time_total_s: 10.211436986923218\n",
|
||
" timestamp: 1658500551\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 95\n",
|
||
" trial_id: 8e2f11ae\n",
|
||
" warmup_time: 0.0029730796813964844\n",
|
||
" \n",
|
||
"Result for objective_8e32324e:\n",
|
||
" date: 2022-07-22_15-35-51\n",
|
||
" done: false\n",
|
||
" experiment_id: 22c7ba8baa2644479b661e6d91e5fae8\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 94\n",
|
||
" iterations_since_restore: 95\n",
|
||
" mean_loss: 0.12746575342465752\n",
|
||
" neg_mean_loss: -0.12746575342465752\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47669\n",
|
||
" time_since_restore: 10.228847980499268\n",
|
||
" time_this_iter_s: 0.10761308670043945\n",
|
||
" time_total_s: 10.228847980499268\n",
|
||
" timestamp: 1658500551\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 95\n",
|
||
" trial_id: 8e32324e\n",
|
||
" warmup_time: 0.004729032516479492\n",
|
||
" \n",
|
||
"Result for objective_8e30a596:\n",
|
||
" date: 2022-07-22_15-35-51\n",
|
||
" done: false\n",
|
||
" experiment_id: d58453075b71453ab615e10ae9713072\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 94\n",
|
||
" iterations_since_restore: 95\n",
|
||
" mean_loss: 9.416\n",
|
||
" neg_mean_loss: -9.416\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47668\n",
|
||
" time_since_restore: 10.231056928634644\n",
|
||
" time_this_iter_s: 0.10677409172058105\n",
|
||
" time_total_s: 10.231056928634644\n",
|
||
" timestamp: 1658500551\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 95\n",
|
||
" trial_id: 8e30a596\n",
|
||
" warmup_time: 0.004169940948486328\n",
|
||
" \n",
|
||
"Result for objective_8e2f11ae:\n",
|
||
" date: 2022-07-22_15-35-52\n",
|
||
" done: true\n",
|
||
" experiment_id: c4d325574058491c8af3a0c869f0ebe5\n",
|
||
" experiment_tag: 2_activation=relu_tanh,height=-0.6800,steps=100,width=6\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: 0.09756291390728478\n",
|
||
" neg_mean_loss: -0.09756291390728478\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47667\n",
|
||
" time_since_restore: 10.747868061065674\n",
|
||
" time_this_iter_s: 0.10819792747497559\n",
|
||
" time_total_s: 10.747868061065674\n",
|
||
" timestamp: 1658500552\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: 8e2f11ae\n",
|
||
" warmup_time: 0.0029730796813964844\n",
|
||
" \n",
|
||
"Result for objective_8e32324e:\n",
|
||
" date: 2022-07-22_15-35-52\n",
|
||
" done: true\n",
|
||
" experiment_id: 22c7ba8baa2644479b661e6d91e5fae8\n",
|
||
" experiment_tag: 4_activation=relu_tanh,height=-2.1500,steps=100,width=3\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: 0.11073289902280128\n",
|
||
" neg_mean_loss: -0.11073289902280128\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47669\n",
|
||
" time_since_restore: 10.768368005752563\n",
|
||
" time_this_iter_s: 0.10648989677429199\n",
|
||
" time_total_s: 10.768368005752563\n",
|
||
" timestamp: 1658500552\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: 8e32324e\n",
|
||
" warmup_time: 0.004729032516479492\n",
|
||
" \n",
|
||
"Result for objective_8e30a596:\n",
|
||
" date: 2022-07-22_15-35-52\n",
|
||
" done: true\n",
|
||
" experiment_id: d58453075b71453ab615e10ae9713072\n",
|
||
" experiment_tag: 3_activation=relu_tanh,height=-5.8400,steps=100,width=0\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: 9.416\n",
|
||
" neg_mean_loss: -9.416\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47668\n",
|
||
" time_since_restore: 10.7723867893219\n",
|
||
" time_this_iter_s: 0.10686278343200684\n",
|
||
" time_total_s: 10.7723867893219\n",
|
||
" timestamp: 1658500552\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: 8e30a596\n",
|
||
" warmup_time: 0.004169940948486328\n",
|
||
" \n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Result for objective_96417df0:\n",
|
||
" date: 2022-07-22_15-35-54\n",
|
||
" done: false\n",
|
||
" experiment_id: e98b245717b4423d8917589cf5d42088\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 10.284\n",
|
||
" neg_mean_loss: -10.284\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47690\n",
|
||
" time_since_restore: 0.10359907150268555\n",
|
||
" time_this_iter_s: 0.10359907150268555\n",
|
||
" time_total_s: 0.10359907150268555\n",
|
||
" timestamp: 1658500554\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: 96417df0\n",
|
||
" warmup_time: 0.003325939178466797\n",
|
||
" \n",
|
||
"Result for objective_96435da0:\n",
|
||
" date: 2022-07-22_15-35-54\n",
|
||
" done: false\n",
|
||
" experiment_id: 8680a80a099c452dadd3be44d3457ca5\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 10.26\n",
|
||
" neg_mean_loss: -10.26\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47691\n",
|
||
" time_since_restore: 0.10206389427185059\n",
|
||
" time_this_iter_s: 0.10206389427185059\n",
|
||
" time_total_s: 0.10206389427185059\n",
|
||
" timestamp: 1658500554\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: 96435da0\n",
|
||
" warmup_time: 0.002891063690185547\n",
|
||
" \n",
|
||
"Result for objective_963faf2a:\n",
|
||
" date: 2022-07-22_15-35-54\n",
|
||
" done: false\n",
|
||
" experiment_id: f28968c2634348c2ae4b0118cc844687\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 9.436\n",
|
||
" neg_mean_loss: -9.436\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47689\n",
|
||
" time_since_restore: 0.10424089431762695\n",
|
||
" time_this_iter_s: 0.10424089431762695\n",
|
||
" time_total_s: 0.10424089431762695\n",
|
||
" timestamp: 1658500554\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: 963faf2a\n",
|
||
" warmup_time: 0.002835988998413086\n",
|
||
" \n",
|
||
"Result for objective_96417df0:\n",
|
||
" date: 2022-07-22_15-35-59\n",
|
||
" done: false\n",
|
||
" experiment_id: e98b245717b4423d8917589cf5d42088\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 46\n",
|
||
" iterations_since_restore: 47\n",
|
||
" mean_loss: 0.6336503496503496\n",
|
||
" neg_mean_loss: -0.6336503496503496\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47690\n",
|
||
" time_since_restore: 5.134061098098755\n",
|
||
" time_this_iter_s: 0.1091001033782959\n",
|
||
" time_total_s: 5.134061098098755\n",
|
||
" timestamp: 1658500559\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 47\n",
|
||
" trial_id: 96417df0\n",
|
||
" warmup_time: 0.003325939178466797\n",
|
||
" \n",
|
||
"Result for objective_96435da0:\n",
|
||
" date: 2022-07-22_15-35-59\n",
|
||
" done: false\n",
|
||
" experiment_id: 8680a80a099c452dadd3be44d3457ca5\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 47\n",
|
||
" iterations_since_restore: 48\n",
|
||
" mean_loss: 0.6024657534246576\n",
|
||
" neg_mean_loss: -0.6024657534246576\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47691\n",
|
||
" time_since_restore: 5.1902501583099365\n",
|
||
" time_this_iter_s: 0.10941314697265625\n",
|
||
" time_total_s: 5.1902501583099365\n",
|
||
" timestamp: 1658500559\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 48\n",
|
||
" trial_id: 96435da0\n",
|
||
" warmup_time: 0.002891063690185547\n",
|
||
" \n",
|
||
"Result for objective_963faf2a:\n",
|
||
" date: 2022-07-22_15-35-59\n",
|
||
" done: false\n",
|
||
" experiment_id: f28968c2634348c2ae4b0118cc844687\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 46\n",
|
||
" iterations_since_restore: 47\n",
|
||
" mean_loss: -0.21434965034965026\n",
|
||
" neg_mean_loss: 0.21434965034965026\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47689\n",
|
||
" time_since_restore: 5.137102127075195\n",
|
||
" time_this_iter_s: 0.10854196548461914\n",
|
||
" time_total_s: 5.137102127075195\n",
|
||
" timestamp: 1658500559\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 47\n",
|
||
" trial_id: 963faf2a\n",
|
||
" warmup_time: 0.002835988998413086\n",
|
||
" \n",
|
||
"Result for objective_96417df0:\n",
|
||
" date: 2022-07-22_15-36-04\n",
|
||
" done: false\n",
|
||
" experiment_id: e98b245717b4423d8917589cf5d42088\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 93\n",
|
||
" iterations_since_restore: 94\n",
|
||
" mean_loss: 0.46005633802816903\n",
|
||
" neg_mean_loss: -0.46005633802816903\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47690\n",
|
||
" time_since_restore: 10.175445079803467\n",
|
||
" time_this_iter_s: 0.10581207275390625\n",
|
||
" time_total_s: 10.175445079803467\n",
|
||
" timestamp: 1658500564\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 94\n",
|
||
" trial_id: 96417df0\n",
|
||
" warmup_time: 0.003325939178466797\n",
|
||
" \n",
|
||
"Result for objective_96435da0:\n",
|
||
" date: 2022-07-22_15-36-05\n",
|
||
" done: false\n",
|
||
" experiment_id: 8680a80a099c452dadd3be44d3457ca5\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 94\n",
|
||
" iterations_since_restore: 95\n",
|
||
" mean_loss: 0.4342160278745645\n",
|
||
" neg_mean_loss: -0.4342160278745645\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47691\n",
|
||
" time_since_restore: 10.23218584060669\n",
|
||
" time_this_iter_s: 0.10732793807983398\n",
|
||
" time_total_s: 10.23218584060669\n",
|
||
" timestamp: 1658500565\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 95\n",
|
||
" trial_id: 96435da0\n",
|
||
" warmup_time: 0.002891063690185547\n",
|
||
" \n",
|
||
"Result for objective_963faf2a:\n",
|
||
" date: 2022-07-22_15-36-05\n",
|
||
" done: false\n",
|
||
" experiment_id: f28968c2634348c2ae4b0118cc844687\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 93\n",
|
||
" iterations_since_restore: 94\n",
|
||
" mean_loss: -0.38794366197183094\n",
|
||
" neg_mean_loss: 0.38794366197183094\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47689\n",
|
||
" time_since_restore: 10.181179761886597\n",
|
||
" time_this_iter_s: 0.10726284980773926\n",
|
||
" time_total_s: 10.181179761886597\n",
|
||
" timestamp: 1658500565\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 94\n",
|
||
" trial_id: 963faf2a\n",
|
||
" warmup_time: 0.002835988998413086\n",
|
||
" \n",
|
||
"Result for objective_96417df0:\n",
|
||
" date: 2022-07-22_15-36-05\n",
|
||
" done: true\n",
|
||
" experiment_id: e98b245717b4423d8917589cf5d42088\n",
|
||
" experiment_tag: 6_activation=relu_tanh,height=2.8400,steps=100,width=6\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: 0.44956291390728476\n",
|
||
" neg_mean_loss: -0.44956291390728476\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47690\n",
|
||
" time_since_restore: 10.820996046066284\n",
|
||
" time_this_iter_s: 0.10588788986206055\n",
|
||
" time_total_s: 10.820996046066284\n",
|
||
" timestamp: 1658500565\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: 96417df0\n",
|
||
" warmup_time: 0.003325939178466797\n",
|
||
" \n",
|
||
"Result for objective_96435da0:\n",
|
||
" date: 2022-07-22_15-36-05\n",
|
||
" done: true\n",
|
||
" experiment_id: 8680a80a099c452dadd3be44d3457ca5\n",
|
||
" experiment_tag: 7_activation=relu_tanh,height=2.6000,steps=100,width=6\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: 0.4255629139072848\n",
|
||
" neg_mean_loss: -0.4255629139072848\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47691\n",
|
||
" time_since_restore: 10.769440174102783\n",
|
||
" time_this_iter_s: 0.10849618911743164\n",
|
||
" time_total_s: 10.769440174102783\n",
|
||
" timestamp: 1658500565\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: 96435da0\n",
|
||
" warmup_time: 0.002891063690185547\n",
|
||
" \n",
|
||
"Result for objective_963faf2a:\n",
|
||
" date: 2022-07-22_15-36-05\n",
|
||
" done: true\n",
|
||
" experiment_id: f28968c2634348c2ae4b0118cc844687\n",
|
||
" experiment_tag: 5_activation=relu_tanh,height=-5.6400,steps=100,width=6\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: -0.39843708609271516\n",
|
||
" neg_mean_loss: 0.39843708609271516\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47689\n",
|
||
" time_since_restore: 10.826673984527588\n",
|
||
" time_this_iter_s: 0.10800504684448242\n",
|
||
" time_total_s: 10.826673984527588\n",
|
||
" timestamp: 1658500565\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: 963faf2a\n",
|
||
" warmup_time: 0.002835988998413086\n",
|
||
" \n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"tuner = tune.Tuner(\n",
|
||
" objective,\n",
|
||
" tune_config=tune.TuneConfig(\n",
|
||
" metric=\"mean_loss\",\n",
|
||
" mode=\"min\",\n",
|
||
" search_alg=algo,\n",
|
||
" num_samples=num_samples,\n",
|
||
" ),\n",
|
||
" param_space=search_config,\n",
|
||
")\n",
|
||
"results = tuner.fit()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "8b1080a3",
|
||
"metadata": {},
|
||
"source": [
|
||
"Here are the hyperparamters found to minimize the mean loss of the defined objective."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"id": "c2fb0f9c",
|
||
"metadata": {
|
||
"lines_to_next_cell": 0
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Best hyperparameters found were: {'steps': 100, 'width': 6, 'height': -5.64, 'activation': 'relu, tanh'}\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(\"Best hyperparameters found were: \", results.get_best_result().config)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "48d0547d",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Optional: passing the parameter space into the search algorithm\n",
|
||
"\n",
|
||
"We can also pass the parameter space ourselves in the following formats: \n",
|
||
"- continuous dimensions: (continuous, search_range, precision)\n",
|
||
"- discrete dimensions: (discrete, search_range, has_order)\n",
|
||
"- grid dimensions: (grid, grid_list)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"id": "00763339",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"space = {\n",
|
||
" \"height\": (ValueType.CONTINUOUS, [-10, 10], 1e-2),\n",
|
||
" \"width\": (ValueType.DISCRETE, [0, 10], True),\n",
|
||
" \"layers\": (ValueType.GRID, [4, 8, 16])\n",
|
||
"}"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "54ecd17b",
|
||
"metadata": {},
|
||
"source": [
|
||
"ZOOpt again handles constraining the amount of concurrent trials with `\"parallel_num\"`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"id": "9ea6d7be",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"zoopt_search_config = {\n",
|
||
" \"parallel_num\": 8,\n",
|
||
" \"metric\": \"mean_loss\",\n",
|
||
" \"mode\": \"min\"\n",
|
||
"}\n",
|
||
"algo = ZOOptSearch(\n",
|
||
" algo=\"Asracos\",\n",
|
||
" budget=num_samples,\n",
|
||
" dim_dict=space,\n",
|
||
" **zoopt_search_config\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "b0b0be8b",
|
||
"metadata": {},
|
||
"source": [
|
||
"This time we pass only `\"steps\"` and `\"activation\"` to the Tune `config` because `\"height\"` and `\"width\"` have been passed into `ZOOptSearch` to create the `search_algo`. \n",
|
||
"Again, we run the experiment to `\"min\"`imize the \"mean_loss\" of the `objective` by searching `search_config` via `algo`, `num_samples` times."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"id": "7995ede5",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"== Status ==<br>Current time: 2022-07-22 15:36:35 (running for 00:00:29.76)<br>Memory usage on this node: 8.2/16.0 GiB<br>Using FIFO scheduling algorithm.<br>Resources requested: 0/16 CPUs, 0/0 GPUs, 0.0/5.39 GiB heap, 0.0/2.0 GiB objects<br>Current best trial: a7fcf02e with mean_loss=-0.7457524893314368 and parameters={'steps': 100, 'height': -8.88, 'width': 7, 'layers': 16}<br>Result logdir: /Users/kai/ray_results/objective_2022-07-22_15-36-05<br>Number of trials: 10/10 (10 TERMINATED)<br><table>\n",
|
||
"<thead>\n",
|
||
"<tr><th>Trial name </th><th>status </th><th>loc </th><th style=\"text-align: right;\"> height</th><th style=\"text-align: right;\"> layers</th><th style=\"text-align: right;\"> width</th><th style=\"text-align: right;\"> loss</th><th style=\"text-align: right;\"> iter</th><th style=\"text-align: right;\"> total time (s)</th><th style=\"text-align: right;\"> iterations</th><th style=\"text-align: right;\"> neg_mean_loss</th></tr>\n",
|
||
"</thead>\n",
|
||
"<tbody>\n",
|
||
"<tr><td>objective_9e64c92e</td><td>TERMINATED</td><td>127.0.0.1:47713</td><td style=\"text-align: right;\"> -8.08</td><td style=\"text-align: right;\"> 16</td><td style=\"text-align: right;\"> 0</td><td style=\"text-align: right;\"> 9.192 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.7118</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> -9.192 </td></tr>\n",
|
||
"<tr><td>objective_9ff31930</td><td>TERMINATED</td><td>127.0.0.1:47718</td><td style=\"text-align: right;\"> 0.38</td><td style=\"text-align: right;\"> 16</td><td style=\"text-align: right;\"> 7</td><td style=\"text-align: right;\"> 0.180248 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.7315</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> -0.180248 </td></tr>\n",
|
||
"<tr><td>objective_9ff47d0c</td><td>TERMINATED</td><td>127.0.0.1:47719</td><td style=\"text-align: right;\"> 5.09</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> 10</td><td style=\"text-align: right;\"> 0.609 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.7924</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> -0.609 </td></tr>\n",
|
||
"<tr><td>objective_9ff5c2b6</td><td>TERMINATED</td><td>127.0.0.1:47720</td><td style=\"text-align: right;\"> 5.26</td><td style=\"text-align: right;\"> 16</td><td style=\"text-align: right;\"> 1</td><td style=\"text-align: right;\"> 1.44343 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.7868</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> -1.44343 </td></tr>\n",
|
||
"<tr><td>objective_a7f414d6</td><td>TERMINATED</td><td>127.0.0.1:47737</td><td style=\"text-align: right;\"> 0.38</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> 7</td><td style=\"text-align: right;\"> 0.180248 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.7232</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> -0.180248 </td></tr>\n",
|
||
"<tr><td>objective_a7f5c682</td><td>TERMINATED</td><td>127.0.0.1:47738</td><td style=\"text-align: right;\"> -2.38</td><td style=\"text-align: right;\"> 16</td><td style=\"text-align: right;\"> 7</td><td style=\"text-align: right;\">-0.0957525</td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.7337</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> 0.0957525</td></tr>\n",
|
||
"<tr><td>objective_a7f7c162</td><td>TERMINATED</td><td>127.0.0.1:47739</td><td style=\"text-align: right;\"> 0.38</td><td style=\"text-align: right;\"> 8</td><td style=\"text-align: right;\"> 7</td><td style=\"text-align: right;\"> 0.180248 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.7452</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> -0.180248 </td></tr>\n",
|
||
"<tr><td>objective_a7f96fda</td><td>TERMINATED</td><td>127.0.0.1:47740</td><td style=\"text-align: right;\"> 0.38</td><td style=\"text-align: right;\"> 16</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> 0.284305 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.7079</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> -0.284305 </td></tr>\n",
|
||
"<tr><td>objective_a7fb1844</td><td>TERMINATED</td><td>127.0.0.1:47741</td><td style=\"text-align: right;\"> 0.38</td><td style=\"text-align: right;\"> 8</td><td style=\"text-align: right;\"> 7</td><td style=\"text-align: right;\"> 0.180248 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.7157</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> -0.180248 </td></tr>\n",
|
||
"<tr><td>objective_a7fcf02e</td><td>TERMINATED</td><td>127.0.0.1:47742</td><td style=\"text-align: right;\"> -8.88</td><td style=\"text-align: right;\"> 16</td><td style=\"text-align: right;\"> 7</td><td style=\"text-align: right;\">-0.745752 </td><td style=\"text-align: right;\"> 100</td><td style=\"text-align: right;\"> 10.7305</td><td style=\"text-align: right;\"> 99</td><td style=\"text-align: right;\"> 0.745752 </td></tr>\n",
|
||
"</tbody>\n",
|
||
"</table><br><br>"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.HTML object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Result for objective_9e64c92e:\n",
|
||
" date: 2022-07-22_15-36-08\n",
|
||
" done: false\n",
|
||
" experiment_id: fafb7d88360d408286e616de3dcd4407\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 9.192\n",
|
||
" neg_mean_loss: -9.192\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47713\n",
|
||
" time_since_restore: 0.1042020320892334\n",
|
||
" time_this_iter_s: 0.1042020320892334\n",
|
||
" time_total_s: 0.1042020320892334\n",
|
||
" timestamp: 1658500568\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: 9e64c92e\n",
|
||
" warmup_time: 0.0030999183654785156\n",
|
||
" \n",
|
||
"Result for objective_9ff47d0c:\n",
|
||
" date: 2022-07-22_15-36-11\n",
|
||
" done: false\n",
|
||
" experiment_id: de33a45d0c344d3aa344d8cff20b6c37\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 10.509\n",
|
||
" neg_mean_loss: -10.509\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47719\n",
|
||
" time_since_restore: 0.10373878479003906\n",
|
||
" time_this_iter_s: 0.10373878479003906\n",
|
||
" time_total_s: 0.10373878479003906\n",
|
||
" timestamp: 1658500571\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: 9ff47d0c\n",
|
||
" warmup_time: 0.003734111785888672\n",
|
||
" \n",
|
||
"Result for objective_9ff31930:\n",
|
||
" date: 2022-07-22_15-36-11\n",
|
||
" done: false\n",
|
||
" experiment_id: 404b066d5e154070b5a3f6f6ef3acb33\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 10.038\n",
|
||
" neg_mean_loss: -10.038\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47718\n",
|
||
" time_since_restore: 0.10415983200073242\n",
|
||
" time_this_iter_s: 0.10415983200073242\n",
|
||
" time_total_s: 0.10415983200073242\n",
|
||
" timestamp: 1658500571\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: 9ff31930\n",
|
||
" warmup_time: 0.0033788681030273438\n",
|
||
" \n",
|
||
"Result for objective_9ff5c2b6:\n",
|
||
" date: 2022-07-22_15-36-11\n",
|
||
" done: false\n",
|
||
" experiment_id: aeb7cb0b0c7c4f6692d47dcd1fe36462\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 10.526\n",
|
||
" neg_mean_loss: -10.526\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47720\n",
|
||
" time_since_restore: 0.10468196868896484\n",
|
||
" time_this_iter_s: 0.10468196868896484\n",
|
||
" time_total_s: 0.10468196868896484\n",
|
||
" timestamp: 1658500571\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: 9ff5c2b6\n",
|
||
" warmup_time: 0.0027132034301757812\n",
|
||
" \n",
|
||
"Result for objective_9e64c92e:\n",
|
||
" date: 2022-07-22_15-36-13\n",
|
||
" done: false\n",
|
||
" experiment_id: fafb7d88360d408286e616de3dcd4407\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 47\n",
|
||
" iterations_since_restore: 48\n",
|
||
" mean_loss: 9.192\n",
|
||
" neg_mean_loss: -9.192\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47713\n",
|
||
" time_since_restore: 5.111851215362549\n",
|
||
" time_this_iter_s: 0.10771799087524414\n",
|
||
" time_total_s: 5.111851215362549\n",
|
||
" timestamp: 1658500573\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 48\n",
|
||
" trial_id: 9e64c92e\n",
|
||
" warmup_time: 0.0030999183654785156\n",
|
||
" \n",
|
||
"Result for objective_9ff47d0c:\n",
|
||
" date: 2022-07-22_15-36-16\n",
|
||
" done: false\n",
|
||
" experiment_id: de33a45d0c344d3aa344d8cff20b6c37\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 47\n",
|
||
" iterations_since_restore: 48\n",
|
||
" mean_loss: 0.7173333333333334\n",
|
||
" neg_mean_loss: -0.7173333333333334\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47719\n",
|
||
" time_since_restore: 5.179923057556152\n",
|
||
" time_this_iter_s: 0.12629103660583496\n",
|
||
" time_total_s: 5.179923057556152\n",
|
||
" timestamp: 1658500576\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 48\n",
|
||
" trial_id: 9ff47d0c\n",
|
||
" warmup_time: 0.003734111785888672\n",
|
||
" \n",
|
||
"Result for objective_9ff31930:\n",
|
||
" date: 2022-07-22_15-36-16\n",
|
||
" done: false\n",
|
||
" experiment_id: 404b066d5e154070b5a3f6f6ef3acb33\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 47\n",
|
||
" iterations_since_restore: 48\n",
|
||
" mean_loss: 0.3329852507374631\n",
|
||
" neg_mean_loss: -0.3329852507374631\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47718\n",
|
||
" time_since_restore: 5.155292749404907\n",
|
||
" time_this_iter_s: 0.10897374153137207\n",
|
||
" time_total_s: 5.155292749404907\n",
|
||
" timestamp: 1658500576\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 48\n",
|
||
" trial_id: 9ff31930\n",
|
||
" warmup_time: 0.0033788681030273438\n",
|
||
" \n",
|
||
"Result for objective_9ff5c2b6:\n",
|
||
" date: 2022-07-22_15-36-16\n",
|
||
" done: false\n",
|
||
" experiment_id: aeb7cb0b0c7c4f6692d47dcd1fe36462\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 47\n",
|
||
" iterations_since_restore: 48\n",
|
||
" mean_loss: 2.2803859649122806\n",
|
||
" neg_mean_loss: -2.2803859649122806\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47720\n",
|
||
" time_since_restore: 5.177261829376221\n",
|
||
" time_this_iter_s: 0.10725784301757812\n",
|
||
" time_total_s: 5.177261829376221\n",
|
||
" timestamp: 1658500576\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 48\n",
|
||
" trial_id: 9ff5c2b6\n",
|
||
" warmup_time: 0.0027132034301757812\n",
|
||
" \n",
|
||
"Result for objective_9e64c92e:\n",
|
||
" date: 2022-07-22_15-36-18\n",
|
||
" done: false\n",
|
||
" experiment_id: fafb7d88360d408286e616de3dcd4407\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 94\n",
|
||
" iterations_since_restore: 95\n",
|
||
" mean_loss: 9.192\n",
|
||
" neg_mean_loss: -9.192\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47713\n",
|
||
" time_since_restore: 10.170606136322021\n",
|
||
" time_this_iter_s: 0.10434508323669434\n",
|
||
" time_total_s: 10.170606136322021\n",
|
||
" timestamp: 1658500578\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 95\n",
|
||
" trial_id: 9e64c92e\n",
|
||
" warmup_time: 0.0030999183654785156\n",
|
||
" \n",
|
||
"Result for objective_9e64c92e:\n",
|
||
" date: 2022-07-22_15-36-19\n",
|
||
" done: true\n",
|
||
" experiment_id: fafb7d88360d408286e616de3dcd4407\n",
|
||
" experiment_tag: 1_height=-8.0800,layers=16,steps=100,width=0\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: 9.192\n",
|
||
" neg_mean_loss: -9.192\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47713\n",
|
||
" time_since_restore: 10.711803197860718\n",
|
||
" time_this_iter_s: 0.10728001594543457\n",
|
||
" time_total_s: 10.711803197860718\n",
|
||
" timestamp: 1658500579\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: 9e64c92e\n",
|
||
" warmup_time: 0.0030999183654785156\n",
|
||
" \n",
|
||
"Result for objective_9ff31930:\n",
|
||
" date: 2022-07-22_15-36-21\n",
|
||
" done: false\n",
|
||
" experiment_id: 404b066d5e154070b5a3f6f6ef3acb33\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 94\n",
|
||
" iterations_since_restore: 95\n",
|
||
" mean_loss: 0.18770059880239523\n",
|
||
" neg_mean_loss: -0.18770059880239523\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47718\n",
|
||
" time_since_restore: 10.197859048843384\n",
|
||
" time_this_iter_s: 0.10710310935974121\n",
|
||
" time_total_s: 10.197859048843384\n",
|
||
" timestamp: 1658500581\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 95\n",
|
||
" trial_id: 9ff31930\n",
|
||
" warmup_time: 0.0033788681030273438\n",
|
||
" \n",
|
||
"Result for objective_9ff47d0c:\n",
|
||
" date: 2022-07-22_15-36-21\n",
|
||
" done: false\n",
|
||
" experiment_id: de33a45d0c344d3aa344d8cff20b6c37\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 94\n",
|
||
" iterations_since_restore: 95\n",
|
||
" mean_loss: 0.6142631578947368\n",
|
||
" neg_mean_loss: -0.6142631578947368\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47719\n",
|
||
" time_since_restore: 10.256150722503662\n",
|
||
" time_this_iter_s: 0.11135077476501465\n",
|
||
" time_total_s: 10.256150722503662\n",
|
||
" timestamp: 1658500581\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 95\n",
|
||
" trial_id: 9ff47d0c\n",
|
||
" warmup_time: 0.003734111785888672\n",
|
||
" \n",
|
||
"Result for objective_9ff5c2b6:\n",
|
||
" date: 2022-07-22_15-36-21\n",
|
||
" done: false\n",
|
||
" experiment_id: aeb7cb0b0c7c4f6692d47dcd1fe36462\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 94\n",
|
||
" iterations_since_restore: 95\n",
|
||
" mean_loss: 1.4875384615384615\n",
|
||
" neg_mean_loss: -1.4875384615384615\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47720\n",
|
||
" time_since_restore: 10.24931287765503\n",
|
||
" time_this_iter_s: 0.10830807685852051\n",
|
||
" time_total_s: 10.24931287765503\n",
|
||
" timestamp: 1658500581\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 95\n",
|
||
" trial_id: 9ff5c2b6\n",
|
||
" warmup_time: 0.0027132034301757812\n",
|
||
" \n",
|
||
"Result for objective_9ff31930:\n",
|
||
" date: 2022-07-22_15-36-21\n",
|
||
" done: true\n",
|
||
" experiment_id: 404b066d5e154070b5a3f6f6ef3acb33\n",
|
||
" experiment_tag: 2_height=0.3800,layers=16,steps=100,width=7\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: 0.18024751066856332\n",
|
||
" neg_mean_loss: -0.18024751066856332\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47718\n",
|
||
" time_since_restore: 10.731510877609253\n",
|
||
" time_this_iter_s: 0.1073448657989502\n",
|
||
" time_total_s: 10.731510877609253\n",
|
||
" timestamp: 1658500581\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: 9ff31930\n",
|
||
" warmup_time: 0.0033788681030273438\n",
|
||
" \n",
|
||
"Result for objective_9ff47d0c:\n",
|
||
" date: 2022-07-22_15-36-21\n",
|
||
" done: true\n",
|
||
" experiment_id: de33a45d0c344d3aa344d8cff20b6c37\n",
|
||
" experiment_tag: 3_height=5.0900,layers=4,steps=100,width=10\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: 0.609\n",
|
||
" neg_mean_loss: -0.609\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47719\n",
|
||
" time_since_restore: 10.792427778244019\n",
|
||
" time_this_iter_s: 0.10576391220092773\n",
|
||
" time_total_s: 10.792427778244019\n",
|
||
" timestamp: 1658500581\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: 9ff47d0c\n",
|
||
" warmup_time: 0.003734111785888672\n",
|
||
" \n",
|
||
"Result for objective_9ff5c2b6:\n",
|
||
" date: 2022-07-22_15-36-21\n",
|
||
" done: true\n",
|
||
" experiment_id: aeb7cb0b0c7c4f6692d47dcd1fe36462\n",
|
||
" experiment_tag: 4_height=5.2600,layers=16,steps=100,width=1\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: 1.4434311926605505\n",
|
||
" neg_mean_loss: -1.4434311926605505\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47720\n",
|
||
" time_since_restore: 10.786811828613281\n",
|
||
" time_this_iter_s: 0.10388994216918945\n",
|
||
" time_total_s: 10.786811828613281\n",
|
||
" timestamp: 1658500581\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: 9ff5c2b6\n",
|
||
" warmup_time: 0.0027132034301757812\n",
|
||
" \n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Result for objective_a7fb1844:\n",
|
||
" date: 2022-07-22_15-36-24\n",
|
||
" done: false\n",
|
||
" experiment_id: 668080a52a3f4c4fad2258177b1fb755\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 10.038\n",
|
||
" neg_mean_loss: -10.038\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47741\n",
|
||
" time_since_restore: 0.10408973693847656\n",
|
||
" time_this_iter_s: 0.10408973693847656\n",
|
||
" time_total_s: 0.10408973693847656\n",
|
||
" timestamp: 1658500584\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: a7fb1844\n",
|
||
" warmup_time: 0.004377126693725586\n",
|
||
" \n",
|
||
"Result for objective_a7f5c682:\n",
|
||
" date: 2022-07-22_15-36-24\n",
|
||
" done: false\n",
|
||
" experiment_id: 4449a3ef690c4b76a0cfbf7c4de7df43\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 9.762\n",
|
||
" neg_mean_loss: -9.762\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47738\n",
|
||
" time_since_restore: 0.10507631301879883\n",
|
||
" time_this_iter_s: 0.10507631301879883\n",
|
||
" time_total_s: 0.10507631301879883\n",
|
||
" timestamp: 1658500584\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: a7f5c682\n",
|
||
" warmup_time: 0.003899097442626953\n",
|
||
" \n",
|
||
"Result for objective_a7f414d6:\n",
|
||
" date: 2022-07-22_15-36-24\n",
|
||
" done: false\n",
|
||
" experiment_id: 20575f602c234dd7a167a93ff353299b\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 10.038\n",
|
||
" neg_mean_loss: -10.038\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47737\n",
|
||
" time_since_restore: 0.10182499885559082\n",
|
||
" time_this_iter_s: 0.10182499885559082\n",
|
||
" time_total_s: 0.10182499885559082\n",
|
||
" timestamp: 1658500584\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: a7f414d6\n",
|
||
" warmup_time: 0.0046689510345458984\n",
|
||
" \n",
|
||
"Result for objective_a7f7c162:\n",
|
||
" date: 2022-07-22_15-36-24\n",
|
||
" done: false\n",
|
||
" experiment_id: f4b185b58be045f594bf127addecbace\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 10.038\n",
|
||
" neg_mean_loss: -10.038\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47739\n",
|
||
" time_since_restore: 0.10427188873291016\n",
|
||
" time_this_iter_s: 0.10427188873291016\n",
|
||
" time_total_s: 0.10427188873291016\n",
|
||
" timestamp: 1658500584\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: a7f7c162\n",
|
||
" warmup_time: 0.004554033279418945\n",
|
||
" \n",
|
||
"Result for objective_a7fcf02e:\n",
|
||
" date: 2022-07-22_15-36-24\n",
|
||
" done: false\n",
|
||
" experiment_id: 5646116e3b69493b920c031d27eeb11b\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 9.112\n",
|
||
" neg_mean_loss: -9.112\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47742\n",
|
||
" time_since_restore: 0.10358119010925293\n",
|
||
" time_this_iter_s: 0.10358119010925293\n",
|
||
" time_total_s: 0.10358119010925293\n",
|
||
" timestamp: 1658500584\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: a7fcf02e\n",
|
||
" warmup_time: 0.003072977066040039\n",
|
||
" \n",
|
||
"Result for objective_a7f96fda:\n",
|
||
" date: 2022-07-22_15-36-25\n",
|
||
" done: false\n",
|
||
" experiment_id: 1983d487678f485a8a8ae7da4b7495a0\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 0\n",
|
||
" iterations_since_restore: 1\n",
|
||
" mean_loss: 10.038\n",
|
||
" neg_mean_loss: -10.038\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47740\n",
|
||
" time_since_restore: 0.10406088829040527\n",
|
||
" time_this_iter_s: 0.10406088829040527\n",
|
||
" time_total_s: 0.10406088829040527\n",
|
||
" timestamp: 1658500585\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 1\n",
|
||
" trial_id: a7f96fda\n",
|
||
" warmup_time: 0.0031909942626953125\n",
|
||
" \n",
|
||
"Result for objective_a7fb1844:\n",
|
||
" date: 2022-07-22_15-36-29\n",
|
||
" done: false\n",
|
||
" experiment_id: 668080a52a3f4c4fad2258177b1fb755\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 47\n",
|
||
" iterations_since_restore: 48\n",
|
||
" mean_loss: 0.3329852507374631\n",
|
||
" neg_mean_loss: -0.3329852507374631\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47741\n",
|
||
" time_since_restore: 5.134153842926025\n",
|
||
" time_this_iter_s: 0.10844898223876953\n",
|
||
" time_total_s: 5.134153842926025\n",
|
||
" timestamp: 1658500589\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 48\n",
|
||
" trial_id: a7fb1844\n",
|
||
" warmup_time: 0.004377126693725586\n",
|
||
" \n",
|
||
"Result for objective_a7f5c682:\n",
|
||
" date: 2022-07-22_15-36-29\n",
|
||
" done: false\n",
|
||
" experiment_id: 4449a3ef690c4b76a0cfbf7c4de7df43\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 47\n",
|
||
" iterations_since_restore: 48\n",
|
||
" mean_loss: 0.05698525073746313\n",
|
||
" neg_mean_loss: -0.05698525073746313\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47738\n",
|
||
" time_since_restore: 5.151050090789795\n",
|
||
" time_this_iter_s: 0.10810613632202148\n",
|
||
" time_total_s: 5.151050090789795\n",
|
||
" timestamp: 1658500589\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 48\n",
|
||
" trial_id: a7f5c682\n",
|
||
" warmup_time: 0.003899097442626953\n",
|
||
" \n",
|
||
"Result for objective_a7fcf02e:\n",
|
||
" date: 2022-07-22_15-36-29\n",
|
||
" done: false\n",
|
||
" experiment_id: 5646116e3b69493b920c031d27eeb11b\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 47\n",
|
||
" iterations_since_restore: 48\n",
|
||
" mean_loss: -0.593014749262537\n",
|
||
" neg_mean_loss: 0.593014749262537\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47742\n",
|
||
" time_since_restore: 5.1300742626190186\n",
|
||
" time_this_iter_s: 0.10815715789794922\n",
|
||
" time_total_s: 5.1300742626190186\n",
|
||
" timestamp: 1658500589\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 48\n",
|
||
" trial_id: a7fcf02e\n",
|
||
" warmup_time: 0.003072977066040039\n",
|
||
" \n",
|
||
"Result for objective_a7f414d6:\n",
|
||
" date: 2022-07-22_15-36-29\n",
|
||
" done: false\n",
|
||
" experiment_id: 20575f602c234dd7a167a93ff353299b\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 47\n",
|
||
" iterations_since_restore: 48\n",
|
||
" mean_loss: 0.3329852507374631\n",
|
||
" neg_mean_loss: -0.3329852507374631\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47737\n",
|
||
" time_since_restore: 5.151458024978638\n",
|
||
" time_this_iter_s: 0.10657620429992676\n",
|
||
" time_total_s: 5.151458024978638\n",
|
||
" timestamp: 1658500589\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 48\n",
|
||
" trial_id: a7f414d6\n",
|
||
" warmup_time: 0.0046689510345458984\n",
|
||
" \n",
|
||
"Result for objective_a7f7c162:\n",
|
||
" date: 2022-07-22_15-36-29\n",
|
||
" done: false\n",
|
||
" experiment_id: f4b185b58be045f594bf127addecbace\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 47\n",
|
||
" iterations_since_restore: 48\n",
|
||
" mean_loss: 0.3329852507374631\n",
|
||
" neg_mean_loss: -0.3329852507374631\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47739\n",
|
||
" time_since_restore: 5.154465675354004\n",
|
||
" time_this_iter_s: 0.1063377857208252\n",
|
||
" time_total_s: 5.154465675354004\n",
|
||
" timestamp: 1658500589\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 48\n",
|
||
" trial_id: a7f7c162\n",
|
||
" warmup_time: 0.004554033279418945\n",
|
||
" \n",
|
||
"Result for objective_a7f96fda:\n",
|
||
" date: 2022-07-22_15-36-30\n",
|
||
" done: false\n",
|
||
" experiment_id: 1983d487678f485a8a8ae7da4b7495a0\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 47\n",
|
||
" iterations_since_restore: 48\n",
|
||
" mean_loss: 0.5430505050505051\n",
|
||
" neg_mean_loss: -0.5430505050505051\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47740\n",
|
||
" time_since_restore: 5.135071039199829\n",
|
||
" time_this_iter_s: 0.10689830780029297\n",
|
||
" time_total_s: 5.135071039199829\n",
|
||
" timestamp: 1658500590\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 48\n",
|
||
" trial_id: a7f96fda\n",
|
||
" warmup_time: 0.0031909942626953125\n",
|
||
" \n",
|
||
"Result for objective_a7fb1844:\n",
|
||
" date: 2022-07-22_15-36-35\n",
|
||
" done: false\n",
|
||
" experiment_id: 668080a52a3f4c4fad2258177b1fb755\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 94\n",
|
||
" iterations_since_restore: 95\n",
|
||
" mean_loss: 0.18770059880239523\n",
|
||
" neg_mean_loss: -0.18770059880239523\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47741\n",
|
||
" time_since_restore: 10.180493831634521\n",
|
||
" time_this_iter_s: 0.10809183120727539\n",
|
||
" time_total_s: 10.180493831634521\n",
|
||
" timestamp: 1658500595\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 95\n",
|
||
" trial_id: a7fb1844\n",
|
||
" warmup_time: 0.004377126693725586\n",
|
||
" \n",
|
||
"Result for objective_a7f414d6:\n",
|
||
" date: 2022-07-22_15-36-35\n",
|
||
" done: false\n",
|
||
" experiment_id: 20575f602c234dd7a167a93ff353299b\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 94\n",
|
||
" iterations_since_restore: 95\n",
|
||
" mean_loss: 0.18770059880239523\n",
|
||
" neg_mean_loss: -0.18770059880239523\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47737\n",
|
||
" time_since_restore: 10.188506126403809\n",
|
||
" time_this_iter_s: 0.10684013366699219\n",
|
||
" time_total_s: 10.188506126403809\n",
|
||
" timestamp: 1658500595\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 95\n",
|
||
" trial_id: a7f414d6\n",
|
||
" warmup_time: 0.0046689510345458984\n",
|
||
" \n",
|
||
"Result for objective_a7f5c682:\n",
|
||
" date: 2022-07-22_15-36-35\n",
|
||
" done: false\n",
|
||
" experiment_id: 4449a3ef690c4b76a0cfbf7c4de7df43\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 94\n",
|
||
" iterations_since_restore: 95\n",
|
||
" mean_loss: -0.08829940119760477\n",
|
||
" neg_mean_loss: 0.08829940119760477\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47738\n",
|
||
" time_since_restore: 10.20038390159607\n",
|
||
" time_this_iter_s: 0.10745882987976074\n",
|
||
" time_total_s: 10.20038390159607\n",
|
||
" timestamp: 1658500595\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 95\n",
|
||
" trial_id: a7f5c682\n",
|
||
" warmup_time: 0.003899097442626953\n",
|
||
" \n",
|
||
"Result for objective_a7f7c162:\n",
|
||
" date: 2022-07-22_15-36-35\n",
|
||
" done: false\n",
|
||
" experiment_id: f4b185b58be045f594bf127addecbace\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 94\n",
|
||
" iterations_since_restore: 95\n",
|
||
" mean_loss: 0.18770059880239523\n",
|
||
" neg_mean_loss: -0.18770059880239523\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47739\n",
|
||
" time_since_restore: 10.203772783279419\n",
|
||
" time_this_iter_s: 0.1077718734741211\n",
|
||
" time_total_s: 10.203772783279419\n",
|
||
" timestamp: 1658500595\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 95\n",
|
||
" trial_id: a7f7c162\n",
|
||
" warmup_time: 0.004554033279418945\n",
|
||
" \n",
|
||
"Result for objective_a7fcf02e:\n",
|
||
" date: 2022-07-22_15-36-35\n",
|
||
" done: false\n",
|
||
" experiment_id: 5646116e3b69493b920c031d27eeb11b\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 94\n",
|
||
" iterations_since_restore: 95\n",
|
||
" mean_loss: -0.738299401197605\n",
|
||
" neg_mean_loss: 0.738299401197605\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47742\n",
|
||
" time_since_restore: 10.187027215957642\n",
|
||
" time_this_iter_s: 0.10881304740905762\n",
|
||
" time_total_s: 10.187027215957642\n",
|
||
" timestamp: 1658500595\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 95\n",
|
||
" trial_id: a7fcf02e\n",
|
||
" warmup_time: 0.003072977066040039\n",
|
||
" \n",
|
||
"Result for objective_a7f96fda:\n",
|
||
" date: 2022-07-22_15-36-35\n",
|
||
" done: false\n",
|
||
" experiment_id: 1983d487678f485a8a8ae7da4b7495a0\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 94\n",
|
||
" iterations_since_restore: 95\n",
|
||
" mean_loss: 0.29706735751295343\n",
|
||
" neg_mean_loss: -0.29706735751295343\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47740\n",
|
||
" time_since_restore: 10.170713901519775\n",
|
||
" time_this_iter_s: 0.10522603988647461\n",
|
||
" time_total_s: 10.170713901519775\n",
|
||
" timestamp: 1658500595\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 95\n",
|
||
" trial_id: a7f96fda\n",
|
||
" warmup_time: 0.0031909942626953125\n",
|
||
" \n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Result for objective_a7fb1844:\n",
|
||
" date: 2022-07-22_15-36-35\n",
|
||
" done: true\n",
|
||
" experiment_id: 668080a52a3f4c4fad2258177b1fb755\n",
|
||
" experiment_tag: 9_height=0.3800,layers=8,steps=100,width=7\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: 0.18024751066856332\n",
|
||
" neg_mean_loss: -0.18024751066856332\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47741\n",
|
||
" time_since_restore: 10.715673923492432\n",
|
||
" time_this_iter_s: 0.10643696784973145\n",
|
||
" time_total_s: 10.715673923492432\n",
|
||
" timestamp: 1658500595\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: a7fb1844\n",
|
||
" warmup_time: 0.004377126693725586\n",
|
||
" \n",
|
||
"Result for objective_a7f414d6:\n",
|
||
" date: 2022-07-22_15-36-35\n",
|
||
" done: true\n",
|
||
" experiment_id: 20575f602c234dd7a167a93ff353299b\n",
|
||
" experiment_tag: 5_height=0.3800,layers=4,steps=100,width=7\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: 0.18024751066856332\n",
|
||
" neg_mean_loss: -0.18024751066856332\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47737\n",
|
||
" time_since_restore: 10.723177909851074\n",
|
||
" time_this_iter_s: 0.1052548885345459\n",
|
||
" time_total_s: 10.723177909851074\n",
|
||
" timestamp: 1658500595\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: a7f414d6\n",
|
||
" warmup_time: 0.0046689510345458984\n",
|
||
" \n",
|
||
"Result for objective_a7f5c682:\n",
|
||
" date: 2022-07-22_15-36-35\n",
|
||
" done: true\n",
|
||
" experiment_id: 4449a3ef690c4b76a0cfbf7c4de7df43\n",
|
||
" experiment_tag: 6_height=-2.3800,layers=16,steps=100,width=7\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: -0.09575248933143668\n",
|
||
" neg_mean_loss: 0.09575248933143668\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47738\n",
|
||
" time_since_restore: 10.733658075332642\n",
|
||
" time_this_iter_s: 0.10680294036865234\n",
|
||
" time_total_s: 10.733658075332642\n",
|
||
" timestamp: 1658500595\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: a7f5c682\n",
|
||
" warmup_time: 0.003899097442626953\n",
|
||
" \n",
|
||
"Result for objective_a7f7c162:\n",
|
||
" date: 2022-07-22_15-36-35\n",
|
||
" done: true\n",
|
||
" experiment_id: f4b185b58be045f594bf127addecbace\n",
|
||
" experiment_tag: 7_height=0.3800,layers=8,steps=100,width=7\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: 0.18024751066856332\n",
|
||
" neg_mean_loss: -0.18024751066856332\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47739\n",
|
||
" time_since_restore: 10.745207786560059\n",
|
||
" time_this_iter_s: 0.10880804061889648\n",
|
||
" time_total_s: 10.745207786560059\n",
|
||
" timestamp: 1658500595\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: a7f7c162\n",
|
||
" warmup_time: 0.004554033279418945\n",
|
||
" \n",
|
||
"Result for objective_a7fcf02e:\n",
|
||
" date: 2022-07-22_15-36-35\n",
|
||
" done: true\n",
|
||
" experiment_id: 5646116e3b69493b920c031d27eeb11b\n",
|
||
" experiment_tag: 10_height=-8.8800,layers=16,steps=100,width=7\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: -0.7457524893314368\n",
|
||
" neg_mean_loss: 0.7457524893314368\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47742\n",
|
||
" time_since_restore: 10.730549097061157\n",
|
||
" time_this_iter_s: 0.11018085479736328\n",
|
||
" time_total_s: 10.730549097061157\n",
|
||
" timestamp: 1658500595\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: a7fcf02e\n",
|
||
" warmup_time: 0.003072977066040039\n",
|
||
" \n",
|
||
"Result for objective_a7f96fda:\n",
|
||
" date: 2022-07-22_15-36-35\n",
|
||
" done: true\n",
|
||
" experiment_id: 1983d487678f485a8a8ae7da4b7495a0\n",
|
||
" experiment_tag: 8_height=0.3800,layers=16,steps=100,width=4\n",
|
||
" hostname: Kais-MacBook-Pro.local\n",
|
||
" iterations: 99\n",
|
||
" iterations_since_restore: 100\n",
|
||
" mean_loss: 0.2843054187192119\n",
|
||
" neg_mean_loss: -0.2843054187192119\n",
|
||
" node_ip: 127.0.0.1\n",
|
||
" pid: 47740\n",
|
||
" time_since_restore: 10.707929849624634\n",
|
||
" time_this_iter_s: 0.10735177993774414\n",
|
||
" time_total_s: 10.707929849624634\n",
|
||
" timestamp: 1658500595\n",
|
||
" timesteps_since_restore: 0\n",
|
||
" training_iteration: 100\n",
|
||
" trial_id: a7f96fda\n",
|
||
" warmup_time: 0.0031909942626953125\n",
|
||
" \n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"tuner = tune.Tuner(\n",
|
||
" objective,\n",
|
||
" tune_config=tune.TuneConfig(\n",
|
||
" metric=\"mean_loss\",\n",
|
||
" mode=\"min\",\n",
|
||
" search_alg=algo,\n",
|
||
" num_samples=num_samples,\n",
|
||
" ),\n",
|
||
" param_space={\"steps\": 100},\n",
|
||
")\n",
|
||
"results = tuner.fit()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "01e3b036",
|
||
"metadata": {},
|
||
"source": [
|
||
"Here are the hyperparamters found to minimize the mean loss of the defined objective."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"id": "c11178dd",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Best hyperparameters found were: {'steps': 100, 'height': -8.88, 'width': 7, 'layers': 16}\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(\"Best hyperparameters found were: \", results.get_best_result().config)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 16,
|
||
"id": "23eab59f",
|
||
"metadata": {
|
||
"tags": [
|
||
"remove-cell"
|
||
]
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"ray.shutdown()"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.7.7"
|
||
},
|
||
"orphan": true
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|