mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
150 lines
6.2 KiB
Python
150 lines
6.2 KiB
Python
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
|
|
from ray.rllib.models.tf.visionnet_v1 import _get_filter_config
|
|
from ray.rllib.models.tf.misc import normc_initializer
|
|
from ray.rllib.utils.framework import get_activation_fn, try_import_tf
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
|
|
class VisionNetwork(TFModelV2):
|
|
"""Generic vision network implemented in ModelV2 API."""
|
|
|
|
def __init__(self, obs_space, action_space, num_outputs, model_config,
|
|
name):
|
|
if not model_config.get("conv_filters"):
|
|
model_config["conv_filters"] = _get_filter_config(obs_space.shape)
|
|
|
|
super(VisionNetwork, self).__init__(obs_space, action_space,
|
|
num_outputs, model_config, name)
|
|
|
|
activation = get_activation_fn(
|
|
self.model_config.get("conv_activation"), framework="tf")
|
|
filters = self.model_config["conv_filters"]
|
|
no_final_linear = self.model_config.get("no_final_linear")
|
|
vf_share_layers = self.model_config.get("vf_share_layers")
|
|
|
|
inputs = tf.keras.layers.Input(
|
|
shape=obs_space.shape, name="observations")
|
|
last_layer = inputs
|
|
# Whether the last layer is the output of a Flattened (rather than
|
|
# a n x (1,1) Conv2D).
|
|
self.last_layer_is_flattened = False
|
|
|
|
# Build the action layers
|
|
for i, (out_size, kernel, stride) in enumerate(filters[:-1], 1):
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
out_size,
|
|
kernel,
|
|
strides=(stride, stride),
|
|
activation=activation,
|
|
padding="same",
|
|
data_format="channels_last",
|
|
name="conv{}".format(i))(last_layer)
|
|
|
|
out_size, kernel, stride = filters[-1]
|
|
|
|
# No final linear: Last layer is a Conv2D and uses num_outputs.
|
|
if no_final_linear and num_outputs:
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
num_outputs,
|
|
kernel,
|
|
strides=(stride, stride),
|
|
activation=activation,
|
|
padding="valid",
|
|
data_format="channels_last",
|
|
name="conv_out")(last_layer)
|
|
conv_out = last_layer
|
|
# Finish network normally (w/o overriding last layer size with
|
|
# `num_outputs`), then add another linear one of size `num_outputs`.
|
|
else:
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
out_size,
|
|
kernel,
|
|
strides=(stride, stride),
|
|
activation=activation,
|
|
padding="valid",
|
|
data_format="channels_last",
|
|
name="conv{}".format(i + 1))(last_layer)
|
|
|
|
# num_outputs defined. Use that to create an exact
|
|
# `num_output`-sized (1,1)-Conv2D.
|
|
if num_outputs:
|
|
conv_out = tf.keras.layers.Conv2D(
|
|
num_outputs, [1, 1],
|
|
activation=None,
|
|
padding="same",
|
|
data_format="channels_last",
|
|
name="conv_out")(last_layer)
|
|
|
|
if conv_out.shape[1] != 1 or conv_out.shape[2] != 1:
|
|
raise ValueError(
|
|
"Given `conv_filters` ({}) do not result in a [B, 1, "
|
|
"1, {} (`num_outputs`)] shape (but in {})! Please "
|
|
"adjust your Conv2D stack such that the dims 1 and 2 "
|
|
"are both 1.".format(self.model_config["conv_filters"],
|
|
self.num_outputs,
|
|
list(conv_out.shape)))
|
|
|
|
# num_outputs not known -> Flatten, then set self.num_outputs
|
|
# to the resulting number of nodes.
|
|
else:
|
|
self.last_layer_is_flattened = True
|
|
conv_out = tf.keras.layers.Flatten(
|
|
data_format="channels_last")(last_layer)
|
|
self.num_outputs = conv_out.shape[1]
|
|
|
|
# Build the value layers
|
|
if vf_share_layers:
|
|
last_layer = tf.keras.layers.Lambda(
|
|
lambda x: tf.squeeze(x, axis=[1, 2]))(last_layer)
|
|
value_out = tf.keras.layers.Dense(
|
|
1,
|
|
name="value_out",
|
|
activation=None,
|
|
kernel_initializer=normc_initializer(0.01))(last_layer)
|
|
else:
|
|
# build a parallel set of hidden layers for the value net
|
|
last_layer = inputs
|
|
for i, (out_size, kernel, stride) in enumerate(filters[:-1], 1):
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
out_size,
|
|
kernel,
|
|
strides=(stride, stride),
|
|
activation=activation,
|
|
padding="same",
|
|
data_format="channels_last",
|
|
name="conv_value_{}".format(i))(last_layer)
|
|
out_size, kernel, stride = filters[-1]
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
out_size,
|
|
kernel,
|
|
strides=(stride, stride),
|
|
activation=activation,
|
|
padding="valid",
|
|
data_format="channels_last",
|
|
name="conv_value_{}".format(i + 1))(last_layer)
|
|
last_layer = tf.keras.layers.Conv2D(
|
|
1, [1, 1],
|
|
activation=None,
|
|
padding="same",
|
|
data_format="channels_last",
|
|
name="conv_value_out")(last_layer)
|
|
value_out = tf.keras.layers.Lambda(
|
|
lambda x: tf.squeeze(x, axis=[1, 2]))(last_layer)
|
|
|
|
self.base_model = tf.keras.Model(inputs, [conv_out, value_out])
|
|
self.register_variables(self.base_model.variables)
|
|
|
|
def forward(self, input_dict, state, seq_lens):
|
|
# Explicit cast to float32 needed in eager.
|
|
model_out, self._value_out = self.base_model(
|
|
tf.cast(input_dict["obs"], tf.float32))
|
|
# Our last layer is already flat.
|
|
if self.last_layer_is_flattened:
|
|
return model_out, state
|
|
# Last layer is a n x [1,1] Conv2D -> Flatten.
|
|
else:
|
|
return tf.squeeze(model_out, axis=[1, 2]), state
|
|
|
|
def value_function(self):
|
|
return tf.reshape(self._value_out, [-1])
|