mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00

update rllib example to use Tuner API. Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
200 lines
6.1 KiB
Python
200 lines
6.1 KiB
Python
"""
|
|
Example of running an RLlib Trainer against a locally running Unity3D editor
|
|
instance (available as Unity3DEnv inside RLlib).
|
|
For a distributed cloud setup example with Unity,
|
|
see `examples/serving/unity3d_[server|client].py`
|
|
|
|
To run this script against a local Unity3D engine:
|
|
1) Install Unity3D and `pip install mlagents`.
|
|
|
|
2) Open the Unity3D Editor and load an example scene from the following
|
|
ml-agents pip package location:
|
|
`.../ml-agents/Project/Assets/ML-Agents/Examples/`
|
|
This script supports the `3DBall`, `3DBallHard`, `SoccerStrikersVsGoalie`,
|
|
`Tennis`, and `Walker` examples.
|
|
Specify the game you chose on your command line via e.g. `--env 3DBall`.
|
|
Feel free to add more supported examples here.
|
|
|
|
3) Then run this script (you will have to press Play in your Unity editor
|
|
at some point to start the game and the learning process):
|
|
$ python unity3d_env_local.py --env 3DBall --stop-reward [..]
|
|
[--framework=torch]?
|
|
"""
|
|
|
|
import argparse
|
|
import os
|
|
|
|
import ray
|
|
from ray import air, tune
|
|
from ray.rllib.env.wrappers.unity3d_env import Unity3DEnv
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--env",
|
|
type=str,
|
|
default="3DBall",
|
|
choices=[
|
|
"3DBall",
|
|
"3DBallHard",
|
|
"GridFoodCollector",
|
|
"Pyramids",
|
|
"SoccerStrikersVsGoalie",
|
|
"SoccerTwos",
|
|
"Sorter",
|
|
"Tennis",
|
|
"VisualHallway",
|
|
"Walker",
|
|
],
|
|
help="The name of the Env to run in the Unity3D editor: `3DBall(Hard)?|"
|
|
"Pyramids|GridFoodCollector|SoccerStrikersVsGoalie|Sorter|Tennis|"
|
|
"VisualHallway|Walker` (feel free to add more and PR!)",
|
|
)
|
|
parser.add_argument(
|
|
"--file-name",
|
|
type=str,
|
|
default=None,
|
|
help="The Unity3d binary (compiled) game, e.g. "
|
|
"'/home/ubuntu/soccer_strikers_vs_goalie_linux.x86_64'. Use `None` for "
|
|
"a currently running Unity3D editor.",
|
|
)
|
|
parser.add_argument(
|
|
"--from-checkpoint",
|
|
type=str,
|
|
default=None,
|
|
help="Full path to a checkpoint file for restoring a previously saved "
|
|
"Trainer state.",
|
|
)
|
|
parser.add_argument("--num-workers", type=int, default=0)
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-iters", type=int, default=9999, help="Number of iterations to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-timesteps", type=int, default=10000000, help="Number of timesteps to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-reward",
|
|
type=float,
|
|
default=9999.0,
|
|
help="Reward at which we stop training.",
|
|
)
|
|
parser.add_argument(
|
|
"--horizon",
|
|
type=int,
|
|
default=3000,
|
|
help="The max. number of `step()`s for any episode (per agent) before "
|
|
"it'll be reset again automatically.",
|
|
)
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.",
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
ray.init()
|
|
|
|
args = parser.parse_args()
|
|
|
|
tune.register_env(
|
|
"unity3d",
|
|
lambda c: Unity3DEnv(
|
|
file_name=c["file_name"],
|
|
no_graphics=(args.env != "VisualHallway" and c["file_name"] is not None),
|
|
episode_horizon=c["episode_horizon"],
|
|
),
|
|
)
|
|
|
|
# Get policies (different agent types; "behaviors" in MLAgents) and
|
|
# the mappings from individual agents to Policies.
|
|
policies, policy_mapping_fn = Unity3DEnv.get_policy_configs_for_game(args.env)
|
|
|
|
config = {
|
|
"env": "unity3d",
|
|
"env_config": {
|
|
"file_name": args.file_name,
|
|
"episode_horizon": args.horizon,
|
|
},
|
|
# For running in editor, force to use just one Worker (we only have
|
|
# one Unity running)!
|
|
"num_workers": args.num_workers if args.file_name else 0,
|
|
# Other settings.
|
|
"lr": 0.0003,
|
|
"lambda": 0.95,
|
|
"gamma": 0.99,
|
|
"sgd_minibatch_size": 256,
|
|
"train_batch_size": 4000,
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"num_sgd_iter": 20,
|
|
"rollout_fragment_length": 200,
|
|
"clip_param": 0.2,
|
|
# Multi-agent setup for the particular env.
|
|
"multiagent": {
|
|
"policies": policies,
|
|
"policy_mapping_fn": policy_mapping_fn,
|
|
},
|
|
"model": {
|
|
"fcnet_hiddens": [512, 512],
|
|
},
|
|
"framework": "tf" if args.env != "Pyramids" else "torch",
|
|
"no_done_at_end": True,
|
|
}
|
|
# Switch on Curiosity based exploration for Pyramids env
|
|
# (not solvable otherwise).
|
|
if args.env == "Pyramids":
|
|
config["exploration_config"] = {
|
|
"type": "Curiosity",
|
|
"eta": 0.1,
|
|
"lr": 0.001,
|
|
# No actual feature net: map directly from observations to feature
|
|
# vector (linearly).
|
|
"feature_net_config": {
|
|
"fcnet_hiddens": [],
|
|
"fcnet_activation": "relu",
|
|
},
|
|
"sub_exploration": {
|
|
"type": "StochasticSampling",
|
|
},
|
|
"forward_net_activation": "relu",
|
|
"inverse_net_activation": "relu",
|
|
}
|
|
elif args.env == "GridFoodCollector":
|
|
config["model"] = {
|
|
"conv_filters": [[16, [4, 4], 2], [32, [4, 4], 2], [256, [10, 10], 1]],
|
|
}
|
|
elif args.env == "Sorter":
|
|
config["model"]["use_attention"] = True
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
# Run the experiment.
|
|
results = tune.Tuner(
|
|
"PPO",
|
|
param_space=config,
|
|
run_config=air.RunConfig(
|
|
stop=stop,
|
|
verbose=1,
|
|
checkpoint_config=air.CheckpointConfig(
|
|
checkpoint_frequency=5,
|
|
checkpoint_at_end=True,
|
|
),
|
|
),
|
|
).fit()
|
|
|
|
# And check the results.
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
|
|
ray.shutdown()
|