No description
Find a file
2016-12-16 14:40:44 -08:00
.travis Python 3 compatibility. (#121) 2016-12-16 14:40:37 -08:00
cmake/Modules help cmake find right python interpreter on mac (#251) 2016-07-11 12:16:10 -07:00
doc Start working toward Python3 compatibility. (#117) 2016-12-11 12:25:31 -08:00
docker Migrate repositories to ray-project. (#438) 2016-09-17 00:52:05 -07:00
examples Start working toward Python3 compatibility. (#117) 2016-12-11 12:25:31 -08:00
lib/python Revert cloudpickle -> pickling change, which no longer seems necessary. (#127) 2016-12-16 14:40:44 -08:00
numbuf Python 3 compatibility. (#121) 2016-12-16 14:40:37 -08:00
scripts Start working toward Python3 compatibility. (#117) 2016-12-11 12:25:31 -08:00
src Fix psubscribe bug in object_table_subscribe (#126) 2016-12-16 14:40:44 -08:00
test Python 3 compatibility. (#121) 2016-12-16 14:40:37 -08:00
vsprojects Windows compatibility (#57) 2016-11-22 17:04:24 -08:00
webui Integration of Webui with Ray (#32) 2016-11-17 22:33:29 -08:00
.clang-format Changes to make tests pass on Travis. (#3) 2016-10-25 22:39:21 -07:00
.editorconfig Update Windows support (#317) 2016-07-28 13:11:13 -07:00
.gitignore Implement tables with redis modules (#114) 2016-12-11 17:40:19 -08:00
.gitmodules Windows compatibility (#57) 2016-11-22 17:04:24 -08:00
.travis.yml Python 3 compatibility. (#121) 2016-12-16 14:40:37 -08:00
build-docker.sh Migrate repositories to ray-project. (#438) 2016-09-17 00:52:05 -07:00
build-webui.sh Global scheduler skeleton (#45) 2016-11-18 19:57:51 -08:00
build.sh Python 3 compatibility. (#121) 2016-12-16 14:40:37 -08:00
LICENSE Change license to Apache 2 (#20) 2016-11-01 23:19:06 -07:00
pylintrc adding pylint (#233) 2016-07-08 12:39:11 -07:00
Ray.sln Windows compatibility (#57) 2016-11-22 17:04:24 -08:00
README.md Start working toward Python3 compatibility. (#117) 2016-12-11 12:25:31 -08:00

Ray

Build Status

Ray is an experimental distributed extension of Python. It is under development and not ready to be used.

The goal of Ray is to make it easy to write machine learning applications that run on a cluster while providing the development and debugging experience of working on a single machine.

Before jumping into the details, here's a simple Python example for doing a Monte Carlo estimation of pi (using multiple cores or potentially multiple machines).

import ray
import numpy as np

# Start a scheduler, an object store, and some workers.
ray.init(start_ray_local=True, num_workers=10)

# Define a remote function for estimating pi.
@ray.remote
def estimate_pi(n):
  x = np.random.uniform(size=n)
  y = np.random.uniform(size=n)
  return 4 * np.mean(x ** 2 + y ** 2 < 1)

# Launch 10 tasks, each of which estimates pi.
result_ids = []
for _ in range(10):
  result_ids.append(estimate_pi.remote(100))

# Fetch the results of the tasks and print their average.
estimate = np.mean(ray.get(result_ids))
print("Pi is approximately {}.".format(estimate))

Within the for loop, each call to estimate_pi.remote(100) sends a message to the scheduler asking it to schedule the task of running estimate_pi with the argument 100. This call returns right away without waiting for the actual estimation of pi to take place. Instead of returning a float, it returns an object ID, which represents the eventual output of the computation (this is a similar to a Future).

The call to ray.get(result_id) takes an object ID and returns the actual estimate of pi (waiting until the computation has finished if necessary).

Next Steps

Example Applications