mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
210 lines
7.3 KiB
Python
210 lines
7.3 KiB
Python
import numpy as np
|
|
import gym
|
|
from typing import List, Optional
|
|
|
|
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.typing import ModelConfigDict, TensorType
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
|
|
class DDPGTFModel(TFModelV2):
|
|
"""Extension of standard TFModel to provide DDPG action- and q-outputs.
|
|
|
|
Data flow:
|
|
obs -> forward() -> model_out
|
|
model_out -> get_policy_output() -> deterministic actions
|
|
model_out, actions -> get_q_values() -> Q(s, a)
|
|
model_out, actions -> get_twin_q_values() -> Q_twin(s, a)
|
|
|
|
Note that this class by itself is not a valid model unless you
|
|
implement forward() in a subclass."""
|
|
|
|
def __init__(
|
|
self,
|
|
obs_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
num_outputs: int,
|
|
model_config: ModelConfigDict,
|
|
name: str,
|
|
# Extra DDPGActionModel args:
|
|
actor_hiddens: Optional[List[int]] = None,
|
|
actor_hidden_activation: str = "relu",
|
|
critic_hiddens: Optional[List[int]] = None,
|
|
critic_hidden_activation: str = "relu",
|
|
twin_q: bool = False,
|
|
add_layer_norm: bool = False,
|
|
):
|
|
"""Initialize variables of this model.
|
|
|
|
Extra model kwargs:
|
|
actor_hiddens: Defines size of hidden layers for the DDPG
|
|
policy head.
|
|
These will be used to postprocess the model output for the
|
|
purposes of computing deterministic actions.
|
|
|
|
Note that the core layers for forward() are not defined here, this
|
|
only defines the layers for the DDPG head. Those layers for forward()
|
|
should be defined in subclasses of DDPGActionModel.
|
|
"""
|
|
|
|
if actor_hiddens is None:
|
|
actor_hiddens = [256, 256]
|
|
|
|
if critic_hiddens is None:
|
|
critic_hiddens = [256, 256]
|
|
|
|
super(DDPGTFModel, self).__init__(
|
|
obs_space, action_space, num_outputs, model_config, name
|
|
)
|
|
|
|
actor_hidden_activation = getattr(tf.nn, actor_hidden_activation, tf.nn.relu)
|
|
critic_hidden_activation = getattr(tf.nn, critic_hidden_activation, tf.nn.relu)
|
|
|
|
self.model_out = tf.keras.layers.Input(shape=(num_outputs,), name="model_out")
|
|
self.bounded = np.logical_and(
|
|
action_space.bounded_above, action_space.bounded_below
|
|
).any()
|
|
self.action_dim = action_space.shape[0]
|
|
|
|
if actor_hiddens:
|
|
last_layer = self.model_out
|
|
for i, n in enumerate(actor_hiddens):
|
|
last_layer = tf.keras.layers.Dense(
|
|
n,
|
|
name="actor_hidden_{}".format(i),
|
|
activation=actor_hidden_activation,
|
|
)(last_layer)
|
|
if add_layer_norm:
|
|
last_layer = tf.keras.layers.LayerNormalization(
|
|
name="LayerNorm_{}".format(i)
|
|
)(last_layer)
|
|
actor_out = tf.keras.layers.Dense(
|
|
self.action_dim, activation=None, name="actor_out"
|
|
)(last_layer)
|
|
else:
|
|
actor_out = self.model_out
|
|
|
|
# Use sigmoid to scale to [0,1], but also double magnitude of input to
|
|
# emulate behaviour of tanh activation used in DDPG and TD3 papers.
|
|
# After sigmoid squashing, re-scale to env action space bounds.
|
|
def lambda_(x):
|
|
action_range = (action_space.high - action_space.low)[None]
|
|
low_action = action_space.low[None]
|
|
sigmoid_out = tf.nn.sigmoid(2 * x)
|
|
squashed = action_range * sigmoid_out + low_action
|
|
return squashed
|
|
|
|
# Only squash if we have bounded actions.
|
|
if self.bounded:
|
|
actor_out = tf.keras.layers.Lambda(lambda_)(actor_out)
|
|
|
|
self.policy_model = tf.keras.Model(self.model_out, actor_out)
|
|
|
|
# Build the Q-model(s).
|
|
self.actions_input = tf.keras.layers.Input(
|
|
shape=(self.action_dim,), name="actions"
|
|
)
|
|
|
|
def build_q_net(name, observations, actions):
|
|
# For continuous actions: Feed obs and actions (concatenated)
|
|
# through the NN.
|
|
q_net = tf.keras.Sequential(
|
|
[
|
|
tf.keras.layers.Concatenate(axis=1),
|
|
]
|
|
+ [
|
|
tf.keras.layers.Dense(
|
|
units=units,
|
|
activation=critic_hidden_activation,
|
|
name="{}_hidden_{}".format(name, i),
|
|
)
|
|
for i, units in enumerate(critic_hiddens)
|
|
]
|
|
+ [
|
|
tf.keras.layers.Dense(
|
|
units=1, activation=None, name="{}_out".format(name)
|
|
)
|
|
]
|
|
)
|
|
|
|
q_net = tf.keras.Model(
|
|
[observations, actions], q_net([observations, actions])
|
|
)
|
|
return q_net
|
|
|
|
self.q_model = build_q_net("q", self.model_out, self.actions_input)
|
|
|
|
if twin_q:
|
|
self.twin_q_model = build_q_net(
|
|
"twin_q", self.model_out, self.actions_input
|
|
)
|
|
else:
|
|
self.twin_q_model = None
|
|
|
|
def get_q_values(self, model_out: TensorType, actions: TensorType) -> TensorType:
|
|
"""Return the Q estimates for the most recent forward pass.
|
|
|
|
This implements Q(s, a).
|
|
|
|
Args:
|
|
model_out: obs embeddings from the model layers, of shape
|
|
[BATCH_SIZE, num_outputs].
|
|
actions: Actions to return the Q-values for.
|
|
Shape: [BATCH_SIZE, action_dim].
|
|
|
|
Returns:
|
|
tensor of shape [BATCH_SIZE].
|
|
"""
|
|
if actions is not None:
|
|
return self.q_model([model_out, actions])
|
|
else:
|
|
return self.q_model(model_out)
|
|
|
|
def get_twin_q_values(
|
|
self, model_out: TensorType, actions: TensorType
|
|
) -> TensorType:
|
|
"""Same as get_q_values but using the twin Q net.
|
|
|
|
This implements the twin Q(s, a).
|
|
|
|
Args:
|
|
model_out: obs embeddings from the model layers, of shape
|
|
[BATCH_SIZE, num_outputs].
|
|
actions: Actions to return the Q-values for.
|
|
Shape: [BATCH_SIZE, action_dim].
|
|
|
|
Returns:
|
|
tensor of shape [BATCH_SIZE].
|
|
"""
|
|
if actions is not None:
|
|
return self.twin_q_model([model_out, actions])
|
|
else:
|
|
return self.twin_q_model(model_out)
|
|
|
|
def get_policy_output(self, model_out: TensorType) -> TensorType:
|
|
"""Return the action output for the most recent forward pass.
|
|
|
|
This outputs the support for pi(s). For continuous action spaces, this
|
|
is the action directly.
|
|
|
|
Args:
|
|
model_out: obs embeddings from the model layers, of shape
|
|
[BATCH_SIZE, num_outputs].
|
|
|
|
Returns:
|
|
tensor of shape [BATCH_SIZE, action_out_size]
|
|
"""
|
|
return self.policy_model(model_out)
|
|
|
|
def policy_variables(self) -> List[TensorType]:
|
|
"""Return the list of variables for the policy net."""
|
|
return list(self.policy_model.variables)
|
|
|
|
def q_variables(self) -> List[TensorType]:
|
|
"""Return the list of variables for Q / twin Q nets."""
|
|
|
|
return self.q_model.variables + (
|
|
self.twin_q_model.variables if self.twin_q_model else []
|
|
)
|