ray/rllib/agents/ddpg/apex.py

37 lines
1.2 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from ray.rllib.agents.dqn.apex import APEX_TRAINER_PROPERTIES
from ray.rllib.agents.ddpg.ddpg import DDPGTrainer, \
DEFAULT_CONFIG as DDPG_CONFIG
from ray.rllib.utils import merge_dicts
APEX_DDPG_DEFAULT_CONFIG = merge_dicts(
DDPG_CONFIG, # see also the options in ddpg.py, which are also supported
{
"optimizer": merge_dicts(
DDPG_CONFIG["optimizer"], {
"max_weight_sync_delay": 400,
"num_replay_buffer_shards": 4,
"debug": False
}),
"n_step": 3,
"num_gpus": 0,
"num_workers": 32,
"buffer_size": 2000000,
"learning_starts": 50000,
"train_batch_size": 512,
"sample_batch_size": 50,
"target_network_update_freq": 500000,
"timesteps_per_iteration": 25000,
"per_worker_exploration": True,
"worker_side_prioritization": True,
"min_iter_time_s": 30,
},
)
ApexDDPGTrainer = DDPGTrainer.with_updates(
name="APEX_DDPG",
default_config=APEX_DDPG_DEFAULT_CONFIG,
**APEX_TRAINER_PROPERTIES)