ray/rllib/examples/nested_action_spaces.py
Sven Mika 1775e89f26
[RLlib] Remove TupleActions and support arbitrarily nested action spaces. (#8143)
Deprecate TupleActions and support arbitrarily nested action spaces.
Closes issue #8143.
2020-04-28 14:59:16 +02:00

97 lines
3.2 KiB
Python

import argparse
import gym
from gym.spaces import Dict, Tuple, Box, Discrete
import numpy as np
import sys
import ray
from ray.tune.registry import register_env
from ray.rllib.utils import try_import_tree
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.space_utils import flatten_space
tf = try_import_tf()
tree = try_import_tree()
parser = argparse.ArgumentParser()
parser.add_argument("--run", type=str, default="PPO")
parser.add_argument("--stop", type=int, default=90)
parser.add_argument("--max-trainstop", type=int, default=90)
parser.add_argument("--num-cpus", type=int, default=0)
class NestedSpaceRepeatAfterMeEnv(gym.Env):
"""Env for which policy has to repeat the (possibly complex) observation.
"""
def __init__(self, config):
self.observation_space = config.get(
"space", Tuple([Discrete(2),
Dict({
"a": Box(-1.0, 1.0, (2, ))
})]))
self.action_space = self.observation_space
self.flattened_action_space = flatten_space(self.action_space)
self.episode_len = config.get("episode_len", 100)
def reset(self):
self.steps = 0
return self._next_obs()
def step(self, action):
self.steps += 1
action = tree.flatten(action)
reward = 0.0
for a, o, space in zip(action, self.current_obs_flattened,
self.flattened_action_space):
# Box: -abs(diff).
if isinstance(space, gym.spaces.Box):
reward -= np.abs(np.sum(a - o))
# Discrete: +1.0 if exact match.
if isinstance(space, gym.spaces.Discrete):
reward += 1.0 if a == o else 0.0
done = self.steps >= self.episode_len
return self._next_obs(), reward, done, {}
def _next_obs(self):
self.current_obs = self.observation_space.sample()
self.current_obs_flattened = tree.flatten(self.current_obs)
return self.current_obs
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus or None)
register_env("NestedSpaceRepeatAfterMeEnv",
lambda c: NestedSpaceRepeatAfterMeEnv(c))
config = {
"env": "NestedSpaceRepeatAfterMeEnv",
"env_config": {
"space": Dict({
"a": Tuple(
[Dict({
"d": Box(-10.0, 10.0, ()),
"e": Discrete(2)
})]),
"b": Box(-10.0, 10.0, (2, )),
"c": Discrete(4)
}),
},
"gamma": 0.0, # No history in Env (bandit problem).
"num_workers": 0,
"num_envs_per_worker": 20,
"entropy_coeff": 0.00005, # We don't want high entropy in this Env.
"num_sgd_iter": 20,
"vf_loss_coeff": 0.01,
"lr": 0.0003
}
import ray.rllib.agents.ppo as ppo
trainer = ppo.PPOTrainer(config=config)
for _ in range(100):
results = trainer.train()
print(results)
if results["episode_reward_mean"] > args.stop:
sys.exit(0) # Learnt, exit gracefully.
sys.exit(1) # Done, but did not learn, exit with error.