ray/examples/carla/models.py
Eric Liang c60ccbad46 [carla] [rllib] Add support for carla nav planner and scenarios from paper (#1382)
* wip

* Sat Dec 30 15:07:28 PST 2017

* log video

* video doesn't work well

* scenario integration

* Sat Dec 30 17:30:22 PST 2017

* Sat Dec 30 17:31:05 PST 2017

* Sat Dec 30 17:31:32 PST 2017

* Sat Dec 30 17:32:16 PST 2017

* Sat Dec 30 17:34:11 PST 2017

* Sat Dec 30 17:34:50 PST 2017

* Sat Dec 30 17:35:34 PST 2017

* Sat Dec 30 17:38:49 PST 2017

* Sat Dec 30 17:40:39 PST 2017

* Sat Dec 30 17:43:00 PST 2017

* Sat Dec 30 17:43:04 PST 2017

* Sat Dec 30 17:45:56 PST 2017

* Sat Dec 30 17:46:26 PST 2017

* Sat Dec 30 17:47:02 PST 2017

* Sat Dec 30 17:51:53 PST 2017

* Sat Dec 30 17:52:54 PST 2017

* Sat Dec 30 17:56:43 PST 2017

* Sat Dec 30 18:27:07 PST 2017

* Sat Dec 30 18:27:52 PST 2017

* fix train

* Sat Dec 30 18:41:51 PST 2017

* Sat Dec 30 18:54:11 PST 2017

* Sat Dec 30 18:56:22 PST 2017

* Sat Dec 30 19:05:04 PST 2017

* Sat Dec 30 19:05:23 PST 2017

* Sat Dec 30 19:11:53 PST 2017

* Sat Dec 30 19:14:31 PST 2017

* Sat Dec 30 19:16:20 PST 2017

* Sat Dec 30 19:18:05 PST 2017

* Sat Dec 30 19:18:45 PST 2017

* Sat Dec 30 19:22:44 PST 2017

* Sat Dec 30 19:24:41 PST 2017

* Sat Dec 30 19:26:57 PST 2017

* Sat Dec 30 19:40:37 PST 2017

* wip models

* reward bonus

* test prep

* Sun Dec 31 18:45:25 PST 2017

* Sun Dec 31 18:58:28 PST 2017

* Sun Dec 31 18:59:34 PST 2017

* Sun Dec 31 19:03:33 PST 2017

* Sun Dec 31 19:05:05 PST 2017

* Sun Dec 31 19:09:25 PST 2017

* fix train

* kill

* add tuple preprocessor

* Sun Dec 31 20:38:33 PST 2017

* Sun Dec 31 22:51:24 PST 2017

* Sun Dec 31 23:14:13 PST 2017

* Sun Dec 31 23:16:04 PST 2017

* Mon Jan  1 00:08:35 PST 2018

* Mon Jan  1 00:10:48 PST 2018

* Mon Jan  1 01:08:31 PST 2018

* Mon Jan  1 14:45:44 PST 2018

* Mon Jan  1 14:54:56 PST 2018

* Mon Jan  1 17:29:29 PST 2018

* switch to euclidean dists

* Mon Jan  1 17:39:27 PST 2018

* Mon Jan  1 17:41:47 PST 2018

* Mon Jan  1 17:44:18 PST 2018

* Mon Jan  1 17:47:09 PST 2018

* Mon Jan  1 20:31:02 PST 2018

* Mon Jan  1 20:39:33 PST 2018

* Mon Jan  1 20:40:55 PST 2018

* Mon Jan  1 20:55:06 PST 2018

* Mon Jan  1 21:05:52 PST 2018

* fix env path

* merge richards fix

* fix hash

* Mon Jan  1 22:04:00 PST 2018

* Mon Jan  1 22:25:29 PST 2018

* Mon Jan  1 22:30:42 PST 2018

* simplified reward function

* add framestack

* add env configs

* simplify speed reward

* Tue Jan  2 17:36:15 PST 2018

* Tue Jan  2 17:49:16 PST 2018

* Tue Jan  2 18:10:38 PST 2018

* add lane keeping simple mode

* Tue Jan  2 20:25:26 PST 2018

* Tue Jan  2 20:30:30 PST 2018

* Tue Jan  2 20:33:26 PST 2018

* Tue Jan  2 20:41:42 PST 2018

* ppo lane keep

* simplify discrete actions

* Tue Jan  2 21:41:05 PST 2018

* Tue Jan  2 21:49:03 PST 2018

* Tue Jan  2 22:12:23 PST 2018

* Tue Jan  2 22:14:42 PST 2018

* Tue Jan  2 22:20:59 PST 2018

* Tue Jan  2 22:23:43 PST 2018

* Tue Jan  2 22:26:27 PST 2018

* Tue Jan  2 22:27:20 PST 2018

* Tue Jan  2 22:44:00 PST 2018

* Tue Jan  2 22:57:58 PST 2018

* Tue Jan  2 23:08:51 PST 2018

* Tue Jan  2 23:11:32 PST 2018

* update dqn reward

* Thu Jan  4 12:29:40 PST 2018

* Thu Jan  4 12:30:26 PST 2018

* Update train_dqn.py

* fix
2018-01-05 21:32:41 -08:00

96 lines
3.5 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.contrib.layers import xavier_initializer
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.models.misc import normc_initializer
from ray.rllib.models.model import Model
class CarlaModel(Model):
"""Carla model that can process the observation tuple.
The architecture processes the image using convolutional layers, the
metrics using fully connected layers, and then combines them with
further fully connected layers.
"""
def _init(self, inputs, num_outputs, options):
# Parse options
image_shape = options["custom_options"]["image_shape"]
convs = options.get("conv_filters", [
[16, [8, 8], 4],
[32, [5, 5], 3],
[32, [5, 5], 2],
[512, [10, 10], 1],
])
hiddens = options.get("fcnet_hiddens", [64])
fcnet_activation = options.get("fcnet_activation", "tanh")
if fcnet_activation == "tanh":
activation = tf.nn.tanh
elif fcnet_activation == "relu":
activation = tf.nn.relu
# Sanity checks
image_size = np.product(image_shape)
expected_shape = [image_size + 5 + 2]
assert inputs.shape.as_list()[1:] == expected_shape, \
(inputs.shape.as_list()[1:], expected_shape)
# Reshape the input vector back into its components
vision_in = tf.reshape(
inputs[:, :image_size], [tf.shape(inputs)[0]] + image_shape)
metrics_in = inputs[:, image_size:]
print("Vision in shape", vision_in)
print("Metrics in shape", metrics_in)
# Setup vision layers
with tf.name_scope("carla_vision"):
for i, (out_size, kernel, stride) in enumerate(convs[:-1], 1):
vision_in = slim.conv2d(
vision_in, out_size, kernel, stride,
scope="conv{}".format(i))
out_size, kernel, stride = convs[-1]
vision_in = slim.conv2d(
vision_in, out_size, kernel, stride,
padding="VALID", scope="conv_out")
vision_in = tf.squeeze(vision_in, [1, 2])
# Setup metrics layer
with tf.name_scope("carla_metrics"):
metrics_in = slim.fully_connected(
metrics_in, 64,
weights_initializer=xavier_initializer(),
activation_fn=activation,
scope="metrics_out")
print("Shape of vision out is", vision_in.shape)
print("Shape of metric out is", metrics_in.shape)
# Combine the metrics and vision inputs
with tf.name_scope("carla_out"):
i = 1
last_layer = tf.concat([vision_in, metrics_in], axis=1)
print("Shape of concatenated out is", last_layer.shape)
for size in hiddens:
last_layer = slim.fully_connected(
last_layer, size,
weights_initializer=xavier_initializer(),
activation_fn=activation,
scope="fc{}".format(i))
i += 1
output = slim.fully_connected(
last_layer, num_outputs,
weights_initializer=normc_initializer(0.01),
activation_fn=None, scope="fc_out")
return output, last_layer
def register_carla_model():
ModelCatalog.register_custom_model("carla", CarlaModel)