mirror of
https://github.com/vale981/ray
synced 2025-03-10 13:26:39 -04:00

* Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 * Reformatting * Fixing tests * Move atari-py install conditional to req.txt * migrate to new ale install method * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 Move atari-py install conditional to req.txt migrate to new ale install method Make parametric_actions_cartpole return float32 actions/obs Adding type conversions if obs/actions don't match space Add utils to make elements match gym space dtypes Co-authored-by: Jun Gong <jungong@anyscale.com> Co-authored-by: sven1977 <svenmika1977@gmail.com>
208 lines
8.6 KiB
Python
208 lines
8.6 KiB
Python
import numpy as np
|
|
import os
|
|
from pathlib import Path
|
|
import unittest
|
|
|
|
import ray
|
|
import ray.rllib.agents.marwil as marwil
|
|
from ray.rllib.evaluation.postprocessing import compute_advantages
|
|
from ray.rllib.offline import JsonReader
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch
|
|
from ray.rllib.utils.test_utils import check, check_compute_single_action, \
|
|
check_train_results, framework_iterator
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
torch, _ = try_import_torch()
|
|
|
|
|
|
class TestMARWIL(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
ray.init(num_cpus=4)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
ray.shutdown()
|
|
|
|
def test_marwil_compilation_and_learning_from_offline_file(self):
|
|
"""Test whether a MARWILTrainer can be built with all frameworks.
|
|
|
|
Learns from a historic-data file.
|
|
To generate this data, first run:
|
|
$ ./train.py --run=PPO --env=CartPole-v0 \
|
|
--stop='{"timesteps_total": 50000}' \
|
|
--config='{"output": "/tmp/out", "batch_mode": "complete_episodes"}'
|
|
"""
|
|
rllib_dir = Path(__file__).parent.parent.parent.parent
|
|
print("rllib dir={}".format(rllib_dir))
|
|
data_file = os.path.join(rllib_dir, "tests/data/cartpole/large.json")
|
|
print("data_file={} exists={}".format(data_file,
|
|
os.path.isfile(data_file)))
|
|
|
|
config = marwil.DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 2
|
|
config["evaluation_num_workers"] = 1
|
|
config["evaluation_interval"] = 3
|
|
config["evaluation_num_episodes"] = 5
|
|
config["evaluation_parallel_to_training"] = True
|
|
# Evaluate on actual environment.
|
|
config["evaluation_config"] = {"input": "sampler"}
|
|
# Learn from offline data.
|
|
config["input"] = [data_file]
|
|
num_iterations = 350
|
|
min_reward = 70.0
|
|
|
|
# Test for all frameworks.
|
|
for _ in framework_iterator(config, frameworks=("tf", "torch")):
|
|
trainer = marwil.MARWILTrainer(config=config, env="CartPole-v0")
|
|
learnt = False
|
|
for i in range(num_iterations):
|
|
results = trainer.train()
|
|
check_train_results(results)
|
|
print(results)
|
|
|
|
eval_results = results.get("evaluation")
|
|
if eval_results:
|
|
print("iter={} R={} ".format(
|
|
i, eval_results["episode_reward_mean"]))
|
|
# Learn until some reward is reached on an actual live env.
|
|
if eval_results["episode_reward_mean"] > min_reward:
|
|
print("learnt!")
|
|
learnt = True
|
|
break
|
|
|
|
if not learnt:
|
|
raise ValueError(
|
|
"MARWILTrainer did not reach {} reward from expert "
|
|
"offline data!".format(min_reward))
|
|
|
|
check_compute_single_action(
|
|
trainer, include_prev_action_reward=True)
|
|
|
|
trainer.stop()
|
|
|
|
def test_marwil_cont_actions_from_offline_file(self):
|
|
"""Test whether MARWILTrainer runs with cont. actions.
|
|
|
|
Learns from a historic-data file.
|
|
To generate this data, first run:
|
|
$ ./train.py --run=PPO --env=Pendulum-v1 \
|
|
--stop='{"timesteps_total": 50000}' \
|
|
--config='{"output": "/tmp/out", "batch_mode": "complete_episodes"}'
|
|
"""
|
|
rllib_dir = Path(__file__).parent.parent.parent.parent
|
|
print("rllib dir={}".format(rllib_dir))
|
|
data_file = os.path.join(rllib_dir, "tests/data/pendulum/large.json")
|
|
print("data_file={} exists={}".format(data_file,
|
|
os.path.isfile(data_file)))
|
|
|
|
config = marwil.DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 1
|
|
config["evaluation_num_workers"] = 1
|
|
config["evaluation_interval"] = 3
|
|
config["evaluation_num_episodes"] = 5
|
|
config["evaluation_parallel_to_training"] = True
|
|
# Evaluate on actual environment.
|
|
config["evaluation_config"] = {"input": "sampler"}
|
|
# Learn from offline data.
|
|
config["input"] = [data_file]
|
|
config["input_evaluation"] = [] # disable (data has no action-probs)
|
|
num_iterations = 3
|
|
|
|
# Test for all frameworks.
|
|
for _ in framework_iterator(config, frameworks=("tf", "torch")):
|
|
trainer = marwil.MARWILTrainer(config=config, env="Pendulum-v1")
|
|
for i in range(num_iterations):
|
|
print(trainer.train())
|
|
trainer.stop()
|
|
|
|
def test_marwil_loss_function(self):
|
|
"""
|
|
To generate the historic data used in this test case, first run:
|
|
$ ./train.py --run=PPO --env=CartPole-v0 \
|
|
--stop='{"timesteps_total": 50000}' \
|
|
--config='{"output": "/tmp/out", "batch_mode": "complete_episodes"}'
|
|
"""
|
|
rllib_dir = Path(__file__).parent.parent.parent.parent
|
|
print("rllib dir={}".format(rllib_dir))
|
|
data_file = os.path.join(rllib_dir, "tests/data/cartpole/small.json")
|
|
print("data_file={} exists={}".format(data_file,
|
|
os.path.isfile(data_file)))
|
|
config = marwil.DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 0 # Run locally.
|
|
# Learn from offline data.
|
|
config["input"] = [data_file]
|
|
|
|
for fw, sess in framework_iterator(config, session=True):
|
|
reader = JsonReader(inputs=[data_file])
|
|
batch = reader.next()
|
|
|
|
trainer = marwil.MARWILTrainer(config=config, env="CartPole-v0")
|
|
policy = trainer.get_policy()
|
|
model = policy.model
|
|
|
|
# Calculate our own expected values (to then compare against the
|
|
# agent's loss output).
|
|
cummulative_rewards = compute_advantages(
|
|
batch, 0.0, config["gamma"], 1.0, False, False)["advantages"]
|
|
if fw == "torch":
|
|
cummulative_rewards = torch.tensor(cummulative_rewards)
|
|
if fw != "tf":
|
|
batch = policy._lazy_tensor_dict(batch)
|
|
model_out, _ = model(batch)
|
|
vf_estimates = model.value_function()
|
|
if fw == "tf":
|
|
model_out, vf_estimates = \
|
|
policy.get_session().run([model_out, vf_estimates])
|
|
adv = cummulative_rewards - vf_estimates
|
|
if fw == "torch":
|
|
adv = adv.detach().cpu().numpy()
|
|
adv_squared = np.mean(np.square(adv))
|
|
c_2 = 100.0 + 1e-8 * (adv_squared - 100.0)
|
|
c = np.sqrt(c_2)
|
|
exp_advs = np.exp(config["beta"] * (adv / c))
|
|
dist = policy.dist_class(model_out, model)
|
|
logp = dist.logp(batch["actions"])
|
|
if fw == "torch":
|
|
logp = logp.detach().cpu().numpy()
|
|
elif fw == "tf":
|
|
logp = sess.run(logp)
|
|
# Calculate all expected loss components.
|
|
expected_vf_loss = 0.5 * adv_squared
|
|
expected_pol_loss = -1.0 * np.mean(exp_advs * logp)
|
|
expected_loss = \
|
|
expected_pol_loss + config["vf_coeff"] * expected_vf_loss
|
|
|
|
# Calculate the algorithm's loss (to check against our own
|
|
# calculation above).
|
|
batch.set_get_interceptor(None)
|
|
postprocessed_batch = policy.postprocess_trajectory(batch)
|
|
loss_func = marwil.marwil_tf_policy.marwil_loss if fw != "torch" \
|
|
else marwil.marwil_torch_policy.marwil_loss
|
|
if fw != "tf":
|
|
policy._lazy_tensor_dict(postprocessed_batch)
|
|
loss_out = loss_func(policy, model, policy.dist_class,
|
|
postprocessed_batch)
|
|
else:
|
|
loss_out, v_loss, p_loss = policy.get_session().run(
|
|
[policy._loss, policy.loss.v_loss, policy.loss.p_loss],
|
|
feed_dict=policy._get_loss_inputs_dict(
|
|
postprocessed_batch, shuffle=False))
|
|
|
|
# Check all components.
|
|
if fw == "torch":
|
|
check(policy.v_loss, expected_vf_loss, decimals=4)
|
|
check(policy.p_loss, expected_pol_loss, decimals=4)
|
|
elif fw == "tf":
|
|
check(v_loss, expected_vf_loss, decimals=4)
|
|
check(p_loss, expected_pol_loss, decimals=4)
|
|
else:
|
|
check(policy.loss.v_loss, expected_vf_loss, decimals=4)
|
|
check(policy.loss.p_loss, expected_pol_loss, decimals=4)
|
|
check(loss_out, expected_loss, decimals=3)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
sys.exit(pytest.main(["-v", __file__]))
|