mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
56 lines
1.5 KiB
Python
56 lines
1.5 KiB
Python
# This workload tests running PBT
|
|
|
|
import ray
|
|
from ray.tune import run_experiments
|
|
from ray.tune.schedulers import PopulationBasedTraining
|
|
from ray.cluster_utils import Cluster
|
|
|
|
num_redis_shards = 5
|
|
redis_max_memory = 10**8
|
|
object_store_memory = 10**8
|
|
num_nodes = 3
|
|
|
|
message = ("Make sure there is enough memory on this machine to run this "
|
|
"workload. We divide the system memory by 2 to provide a buffer.")
|
|
assert (num_nodes * object_store_memory + num_redis_shards * redis_max_memory <
|
|
ray.utils.get_system_memory() / 2), message
|
|
|
|
# Simulate a cluster on one machine.
|
|
|
|
cluster = Cluster()
|
|
for i in range(num_nodes):
|
|
cluster.add_node(
|
|
redis_port=6379 if i == 0 else None,
|
|
num_redis_shards=num_redis_shards if i == 0 else None,
|
|
num_cpus=10,
|
|
num_gpus=0,
|
|
resources={str(i): 2},
|
|
object_store_memory=object_store_memory,
|
|
redis_max_memory=redis_max_memory,
|
|
dashboard_host="0.0.0.0")
|
|
ray.init(address=cluster.address)
|
|
|
|
# Run the workload.
|
|
|
|
pbt = PopulationBasedTraining(
|
|
time_attr="training_iteration",
|
|
metric="episode_reward_mean",
|
|
mode="max",
|
|
perturbation_interval=10,
|
|
hyperparam_mutations={
|
|
"lr": [0.1, 0.01, 0.001, 0.0001],
|
|
})
|
|
|
|
run_experiments(
|
|
{
|
|
"pbt_test": {
|
|
"run": "PG",
|
|
"env": "CartPole-v0",
|
|
"num_samples": 8,
|
|
"config": {
|
|
"lr": 0.01,
|
|
},
|
|
}
|
|
},
|
|
scheduler=pbt,
|
|
verbose=False)
|