ray/rllib/models/torch/fcnet.py
Sven Mika d15609ba2a
[RLlib] PyTorch version of ARS (Augmented Random Search). (#8106)
This PR implements a PyTorch version of RLlib's ARS algorithm using RLlib's functional algo builder API. It also adds a regression test for ARS (torch) on CartPole.
2020-04-21 09:47:52 +02:00

100 lines
3.7 KiB
Python

import logging
import numpy as np
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.models.torch.misc import SlimFC, normc_initializer
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import get_activation_fn
from ray.rllib.utils import try_import_torch
_, nn = try_import_torch()
logger = logging.getLogger(__name__)
class FullyConnectedNetwork(TorchModelV2, nn.Module):
"""Generic fully connected network."""
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
model_config, name)
nn.Module.__init__(self)
activation = get_activation_fn(
model_config.get("fcnet_activation"), framework="torch")
hiddens = model_config.get("fcnet_hiddens")
no_final_linear = model_config.get("no_final_linear")
# TODO(sven): implement case: vf_shared_layers = False.
# vf_share_layers = model_config.get("vf_share_layers")
logger.debug("Constructing fcnet {} {}".format(hiddens, activation))
layers = []
prev_layer_size = int(np.product(obs_space.shape))
self._logits = None
# Create layers 0 to second-last.
for size in hiddens[:-1]:
layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=size,
initializer=normc_initializer(1.0),
activation_fn=activation))
prev_layer_size = size
# The last layer is adjusted to be of size num_outputs, but it's a
# layer with activation.
if no_final_linear and self.num_outputs:
layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=self.num_outputs,
initializer=normc_initializer(1.0),
activation_fn=activation))
prev_layer_size = self.num_outputs
# Finish the layers with the provided sizes (`hiddens`), plus -
# iff num_outputs > 0 - a last linear layer of size num_outputs.
else:
if len(hiddens) > 0:
layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=hiddens[-1],
initializer=normc_initializer(1.0),
activation_fn=activation))
prev_layer_size = hiddens[-1]
if self.num_outputs:
self._logits = SlimFC(
in_size=prev_layer_size,
out_size=self.num_outputs,
initializer=normc_initializer(0.01),
activation_fn=None)
else:
self.num_outputs = (
[np.product(obs_space.shape)] + hiddens[-1:-1])[-1]
self._hidden_layers = nn.Sequential(*layers)
# TODO(sven): Implement non-shared value branch.
self._value_branch = SlimFC(
in_size=prev_layer_size,
out_size=1,
initializer=normc_initializer(1.0),
activation_fn=None)
# Holds the current value output.
self._cur_value = None
@override(TorchModelV2)
def forward(self, input_dict, state, seq_lens):
obs = input_dict["obs_flat"]
features = self._hidden_layers(obs.reshape(obs.shape[0], -1))
logits = self._logits(features) if self._logits else features
self._cur_value = self._value_branch(features).squeeze(1)
return logits, state
@override(TorchModelV2)
def value_function(self):
assert self._cur_value is not None, "must call forward() first"
return self._cur_value