ray/rllib/models/tf/fcnet_v2.py
Sven Mika bf25aee392
[RLlib] Deprecate all Model(v1) usage. (#8146)
Deprecate all Model(v1) usage.
2020-04-29 12:12:59 +02:00

93 lines
3.6 KiB
Python

import numpy as np
from ray.rllib.models.tf.misc import normc_initializer
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
from ray.rllib.utils.framework import get_activation_fn, try_import_tf
tf = try_import_tf()
class FullyConnectedNetwork(TFModelV2):
"""Generic fully connected network implemented in ModelV2 API."""
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
super(FullyConnectedNetwork, self).__init__(
obs_space, action_space, num_outputs, model_config, name)
activation = get_activation_fn(model_config.get("fcnet_activation"))
hiddens = model_config.get("fcnet_hiddens", [])
no_final_linear = model_config.get("no_final_linear")
vf_share_layers = model_config.get("vf_share_layers")
# we are using obs_flat, so take the flattened shape as input
inputs = tf.keras.layers.Input(
shape=(np.product(obs_space.shape), ), name="observations")
last_layer = layer_out = inputs
i = 1
# Create layers 0 to second-last.
for size in hiddens[:-1]:
last_layer = tf.keras.layers.Dense(
size,
name="fc_{}".format(i),
activation=activation,
kernel_initializer=normc_initializer(1.0))(last_layer)
i += 1
# The last layer is adjusted to be of size num_outputs, but it's a
# layer with activation.
if no_final_linear and self.num_outputs:
layer_out = tf.keras.layers.Dense(
self.num_outputs,
name="fc_out",
activation=activation,
kernel_initializer=normc_initializer(1.0))(last_layer)
# Finish the layers with the provided sizes (`hiddens`), plus -
# iff num_outputs > 0 - a last linear layer of size num_outputs.
else:
if len(hiddens) > 0:
last_layer = tf.keras.layers.Dense(
hiddens[-1],
name="fc_{}".format(i),
activation=activation,
kernel_initializer=normc_initializer(1.0))(last_layer)
if self.num_outputs:
layer_out = tf.keras.layers.Dense(
self.num_outputs,
name="fc_out",
activation=None,
kernel_initializer=normc_initializer(0.01))(last_layer)
# Adjust self.num_outputs to be the number of nodes in the last
# layer.
else:
self.num_outputs = (
[np.product(obs_space.shape)] + hiddens[-1:-1])[-1]
if not vf_share_layers:
# build a parallel set of hidden layers for the value net
last_layer = inputs
i = 1
for size in hiddens:
last_layer = tf.keras.layers.Dense(
size,
name="fc_value_{}".format(i),
activation=activation,
kernel_initializer=normc_initializer(1.0))(last_layer)
i += 1
value_out = tf.keras.layers.Dense(
1,
name="value_out",
activation=None,
kernel_initializer=normc_initializer(0.01))(last_layer)
self.base_model = tf.keras.Model(inputs, [layer_out, value_out])
self.register_variables(self.base_model.variables)
def forward(self, input_dict, state, seq_lens):
model_out, self._value_out = self.base_model(input_dict["obs_flat"])
return model_out, state
def value_function(self):
return tf.reshape(self._value_out, [-1])