mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00

* Policy-classes cleanup and torch/tf unification. - Make Policy abstract. - Add `action_dist` to call to `extra_action_out_fn` (necessary for PPO torch). - Move some methods and vars to base Policy (from TFPolicy): num_state_tensors, ACTION_PROB, ACTION_LOGP and some more. * Fix `clip_action` import from Policy (should probably be moved into utils altogether). * - Move `is_recurrent()` and `num_state_tensors()` into TFPolicy (from DynamicTFPolicy). - Add config to all Policy c'tor calls (as 3rd arg after obs and action spaces). * Add `config` to c'tor call to TFPolicy. * Add missing `config` to c'tor call to TFPolicy in marvil_policy.py. * Fix test_rollout_worker.py::MockPolicy and BadPolicy classes (Policy base class is now abstract). * Fix LINT errors in Policy classes. * Implement StatefulPolicy abstract methods in test cases: test_multi_agent_env.py. * policy.py LINT errors. * Create a simple TestPolicy to sub-class from when testing Policies (reduces code in some test cases). * policy.py - Remove abstractmethod from `apply_gradients` and `compute_gradients` (these are not required iff `learn_on_batch` implemented). - Fix docstring of `num_state_tensors`. * Make QMIX torch Policy a child of TorchPolicy (instead of Policy). * QMixPolicy add empty implementations of abstract Policy methods. * Store Policy's config in self.config in base Policy c'tor. * - Make only compute_actions in base Policy's an abstractmethod and provide pass implementation to all other methods if not defined. - Fix state_batches=None (most Policies don't have internal states). * Cartpole tf learning. * Cartpole tf AND torch learning (in ~ same ts). * Cartpole tf AND torch learning (in ~ same ts). 2 * Cartpole tf (torch syntax-broken) learning (in ~ same ts). 3 * Cartpole tf AND torch learning (in ~ same ts). 4 * Cartpole tf AND torch learning (in ~ same ts). 5 * Cartpole tf AND torch learning (in ~ same ts). 6 * Cartpole tf AND torch learning (in ~ same ts). Pendulum tf learning. * WIP. * WIP. * SAC torch learning Pendulum. * WIP. * SAC torch and tf learning Pendulum and Cartpole after cleanup. * WIP. * LINT. * LINT. * SAC: Move policy.target_model to policy.device as well. * Fixes and cleanup. * Fix data-format of tf keras Conv2d layers (broken for some tf-versions which have data_format="channels_first" as default). * Fixes and LINT. * Fixes and LINT. * Fix and LINT. * WIP. * Test fixes and LINT. * Fixes and LINT. Co-authored-by: Sven Mika <sven@Svens-MacBook-Pro.local>
108 lines
3.3 KiB
Python
108 lines
3.3 KiB
Python
""" Code adapted from https://github.com/ikostrikov/pytorch-a3c"""
|
|
import numpy as np
|
|
|
|
from ray.rllib.utils import try_import_torch
|
|
|
|
torch, nn = try_import_torch()
|
|
|
|
|
|
def normc_initializer(std=1.0):
|
|
def initializer(tensor):
|
|
tensor.data.normal_(0, 1)
|
|
tensor.data *= std / torch.sqrt(
|
|
tensor.data.pow(2).sum(1, keepdim=True))
|
|
|
|
return initializer
|
|
|
|
|
|
def valid_padding(in_size, filter_size, stride_size):
|
|
"""Note: Padding is added to match TF conv2d `same` padding. See
|
|
www.tensorflow.org/versions/r0.12/api_docs/python/nn/convolution
|
|
|
|
Params:
|
|
in_size (tuple): Rows (Height), Column (Width) for input
|
|
stride_size (tuple): Rows (Height), Column (Width) for stride
|
|
filter_size (tuple): Rows (Height), Column (Width) for filter
|
|
|
|
Output:
|
|
padding (tuple): For input into torch.nn.ZeroPad2d
|
|
output (tuple): Output shape after padding and convolution
|
|
"""
|
|
in_height, in_width = in_size
|
|
filter_height, filter_width = filter_size
|
|
stride_height, stride_width = stride_size
|
|
|
|
out_height = np.ceil(float(in_height) / float(stride_height))
|
|
out_width = np.ceil(float(in_width) / float(stride_width))
|
|
|
|
pad_along_height = int(
|
|
((out_height - 1) * stride_height + filter_height - in_height))
|
|
pad_along_width = int(
|
|
((out_width - 1) * stride_width + filter_width - in_width))
|
|
pad_top = pad_along_height // 2
|
|
pad_bottom = pad_along_height - pad_top
|
|
pad_left = pad_along_width // 2
|
|
pad_right = pad_along_width - pad_left
|
|
padding = (pad_left, pad_right, pad_top, pad_bottom)
|
|
output = (out_height, out_width)
|
|
return padding, output
|
|
|
|
|
|
class SlimConv2d(nn.Module):
|
|
"""Simple mock of tf.slim Conv2d"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel,
|
|
stride,
|
|
padding,
|
|
# Defaulting these to nn.[..] will break soft torch import.
|
|
initializer="default",
|
|
activation_fn="default",
|
|
bias_init=0):
|
|
super(SlimConv2d, self).__init__()
|
|
layers = []
|
|
if padding:
|
|
layers.append(nn.ZeroPad2d(padding))
|
|
conv = nn.Conv2d(in_channels, out_channels, kernel, stride)
|
|
if initializer:
|
|
if initializer == "default":
|
|
initializer = nn.init.xavier_uniform_
|
|
initializer(conv.weight)
|
|
nn.init.constant_(conv.bias, bias_init)
|
|
|
|
layers.append(conv)
|
|
if activation_fn:
|
|
if activation_fn == "default":
|
|
activation_fn = nn.ReLU
|
|
layers.append(activation_fn())
|
|
self._model = nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
return self._model(x)
|
|
|
|
|
|
class SlimFC(nn.Module):
|
|
"""Simple PyTorch version of `linear` function"""
|
|
|
|
def __init__(self,
|
|
in_size,
|
|
out_size,
|
|
initializer=None,
|
|
activation_fn=None,
|
|
bias_init=0.0):
|
|
super(SlimFC, self).__init__()
|
|
layers = []
|
|
linear = nn.Linear(in_size, out_size)
|
|
if initializer:
|
|
initializer(linear.weight)
|
|
nn.init.constant_(linear.bias, bias_init)
|
|
layers.append(linear)
|
|
if activation_fn:
|
|
layers.append(activation_fn())
|
|
self._model = nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
return self._model(x)
|