ray/rllib/tests/run_regression_tests.py
2020-07-11 22:06:35 +02:00

103 lines
3.3 KiB
Python

#!/usr/bin/env python
# Runs one or more regression tests. Retries tests up to 3 times.
#
# Example usage:
# $ python run_regression_tests.py regression-tests/cartpole-es-[tf|torch].yaml
#
# When using in BAZEL (with py_test), e.g. see in ray/rllib/BUILD:
# py_test(
# name = "run_regression_tests",
# main = "tests/run_regression_tests.py",
# tags = ["learning_tests"],
# size = "medium", # 5min timeout
# srcs = ["tests/run_regression_tests.py"],
# data = glob(["tuned_examples/regression_tests/*.yaml"]),
# # Pass `BAZEL` option and the path to look for yaml regression files.
# args = ["BAZEL", "tuned_examples/regression_tests"]
# )
import argparse
import os
from pathlib import Path
import sys
import yaml
import ray
from ray.tune import run_experiments
from ray.rllib import _register_all
parser = argparse.ArgumentParser()
parser.add_argument(
"--torch",
action="store_true",
help="Runs all tests with PyTorch enabled.")
parser.add_argument(
"--yaml-dir",
type=str,
help="The directory in which to find all yamls to test.")
if __name__ == "__main__":
args = parser.parse_args()
# Bazel regression test mode: Get path to look for yaml files.
# Get the path or single file to use.
rllib_dir = Path(__file__).parent.parent
print("rllib dir={}".format(rllib_dir))
abs_yaml_path = os.path.join(rllib_dir, args.yaml_dir)
# Single file given.
if os.path.isfile(abs_yaml_path):
yaml_files = [abs_yaml_path]
# Given path/file does not exist.
elif not os.path.isdir(abs_yaml_path):
raise ValueError("yaml-dir ({}) not found!".format(args.yaml_dir))
# Path given -> Get all yaml files in there via rglob.
else:
yaml_files = rllib_dir.rglob(args.yaml_dir + "/*.yaml")
yaml_files = sorted(
map(lambda path: str(path.absolute()), yaml_files), reverse=True)
print("Will run the following regression tests:")
for yaml_file in yaml_files:
print("->", yaml_file)
# Loop through all collected files.
for yaml_file in yaml_files:
experiments = yaml.load(open(yaml_file).read())
assert len(experiments) == 1,\
"Error, can only run a single experiment per yaml file!"
print("== Test config ==")
print(yaml.dump(experiments))
# Add torch option to exp configs.
for exp in experiments.values():
if args.torch:
exp["config"]["framework"] = "torch"
# Try running each test 3 times and make sure it reaches the given
# reward.
passed = False
for i in range(3):
try:
ray.init(num_cpus=5)
trials = run_experiments(experiments, resume=False, verbose=1)
finally:
ray.shutdown()
_register_all()
for t in trials:
if (t.last_result["episode_reward_mean"] >=
t.stopping_criterion["episode_reward_mean"]):
passed = True
break
if passed:
print("Regression test PASSED")
break
else:
print("Regression test FAILED on attempt {}", i + 1)
if not passed:
print("Overall regression FAILED: Exiting with Error.")
sys.exit(1)