ray/rllib/env/vector_env.py

159 lines
5.5 KiB
Python

import logging
import gym
import numpy as np
from typing import Callable, List, Tuple
from ray.rllib.utils.annotations import override, PublicAPI
from ray.rllib.utils.typing import EnvType, EnvConfigDict, EnvObsType, \
EnvInfoDict, EnvActionType
logger = logging.getLogger(__name__)
@PublicAPI
class VectorEnv:
"""An environment that supports batch evaluation using clones of sub-envs.
"""
def __init__(self, observation_space: gym.Space, action_space: gym.Space,
num_envs: int):
"""Initializes a VectorEnv object.
Args:
observation_space (Space): The observation Space of a single
sub-env.
action_space (Space): The action Space of a single sub-env.
num_envs (int): The number of clones to make of the given sub-env.
"""
self.observation_space = observation_space
self.action_space = action_space
self.num_envs = num_envs
@staticmethod
def wrap(make_env: Callable[[int], EnvType] = None,
existing_envs: List[gym.Env] = None,
num_envs: int = 1,
action_space: gym.Space = None,
observation_space: gym.Space = None,
env_config: EnvConfigDict = None):
return _VectorizedGymEnv(
make_env=make_env,
existing_envs=existing_envs or [],
num_envs=num_envs,
observation_space=observation_space,
action_space=action_space,
env_config=env_config)
@PublicAPI
def vector_reset(self) -> List[EnvObsType]:
"""Resets all sub-environments.
Returns:
obs (List[any]): List of observations from each environment.
"""
raise NotImplementedError
@PublicAPI
def reset_at(self, index: int) -> EnvObsType:
"""Resets a single environment.
Returns:
obs (obj): Observations from the reset sub environment.
"""
raise NotImplementedError
@PublicAPI
def vector_step(
self, actions: List[EnvActionType]
) -> Tuple[List[EnvObsType], List[float], List[bool], List[EnvInfoDict]]:
"""Performs a vectorized step on all sub environments using `actions`.
Arguments:
actions (List[any]): List of actions (one for each sub-env).
Returns:
obs (List[any]): New observations for each sub-env.
rewards (List[any]): Reward values for each sub-env.
dones (List[any]): Done values for each sub-env.
infos (List[any]): Info values for each sub-env.
"""
raise NotImplementedError
@PublicAPI
def get_unwrapped(self) -> List[EnvType]:
"""Returns the underlying sub environments.
Returns:
List[Env]: List of all underlying sub environments.
"""
raise NotImplementedError
class _VectorizedGymEnv(VectorEnv):
"""Internal wrapper to translate any gym envs into a VectorEnv object.
"""
def __init__(self,
make_env=None,
existing_envs=None,
num_envs=1,
*,
observation_space=None,
action_space=None,
env_config=None):
"""Initializes a _VectorizedGymEnv object.
Args:
make_env (Optional[callable]): Factory that produces a new gym env
taking a single `config` dict arg. Must be defined if the
number of `existing_envs` is less than `num_envs`.
existing_envs (Optional[List[Env]]): Optional list of already
instantiated sub environments.
num_envs (int): Total number of sub environments in this VectorEnv.
action_space (Optional[Space]): The action space. If None, use
existing_envs[0]'s action space.
observation_space (Optional[Space]): The observation space.
If None, use existing_envs[0]'s action space.
env_config (Optional[dict]): Additional sub env config to pass to
make_env as first arg.
"""
self.make_env = make_env
self.envs = existing_envs
while len(self.envs) < num_envs:
self.envs.append(self.make_env(len(self.envs)))
super().__init__(
observation_space=observation_space
or self.envs[0].observation_space,
action_space=action_space or self.envs[0].action_space,
num_envs=num_envs)
@override(VectorEnv)
def vector_reset(self):
return [e.reset() for e in self.envs]
@override(VectorEnv)
def reset_at(self, index):
return self.envs[index].reset()
@override(VectorEnv)
def vector_step(self, actions):
obs_batch, rew_batch, done_batch, info_batch = [], [], [], []
for i in range(self.num_envs):
obs, r, done, info = self.envs[i].step(actions[i])
if not np.isscalar(r) or not np.isreal(r) or not np.isfinite(r):
raise ValueError(
"Reward should be finite scalar, got {} ({}). "
"Actions={}.".format(r, type(r), actions[i]))
if type(info) is not dict:
raise ValueError("Info should be a dict, got {} ({})".format(
info, type(info)))
obs_batch.append(obs)
rew_batch.append(r)
done_batch.append(done)
info_batch.append(info)
return obs_batch, rew_batch, done_batch, info_batch
@override(VectorEnv)
def get_unwrapped(self):
return self.envs