mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00

This improves error handling per https://docs.google.com/document/d/1IeEsJOiurg-zctOcBjY-tQVbsCmURFSnUCTkx_4a7Cw/edit#heading=h.pdzl9cil9e8z (the RPC part). Semantics If all queries to the source failed, raise a RayStateApiException. If partial queries are failed, warnings.warn the partial failure when print_api_stats=True. It is true for CLI. It is false when it is used within Python API or json / yaml format is required.
400 lines
15 KiB
Python
400 lines
15 KiB
Python
import asyncio
|
|
import logging
|
|
|
|
from itertools import islice
|
|
from typing import List
|
|
|
|
from ray.core.generated.common_pb2 import TaskStatus
|
|
import ray.dashboard.utils as dashboard_utils
|
|
import ray.dashboard.memory_utils as memory_utils
|
|
|
|
from ray.experimental.state.common import (
|
|
filter_fields,
|
|
ActorState,
|
|
PlacementGroupState,
|
|
NodeState,
|
|
WorkerState,
|
|
TaskState,
|
|
ObjectState,
|
|
RuntimeEnvState,
|
|
ListApiOptions,
|
|
ListApiResponse,
|
|
)
|
|
from ray.experimental.state.state_manager import (
|
|
StateDataSourceClient,
|
|
DataSourceUnavailable,
|
|
)
|
|
from ray.runtime_env import RuntimeEnv
|
|
from ray._private.utils import binary_to_hex
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
GCS_QUERY_FAILURE_WARNING = (
|
|
"Failed to query data from GCS. It is due to "
|
|
"(1) GCS is unexpectedly failed. "
|
|
"(2) GCS is overloaded. "
|
|
"(3) There's an unexpected network issue. "
|
|
"Please check the gcs_server.out log to find the root cause."
|
|
)
|
|
NODE_QUERY_FAILURE_WARNING = (
|
|
"Failed to query data from {type}. "
|
|
"Queryed {total} {type} "
|
|
"and {network_failures} {type} failed to reply. It is due to "
|
|
"(1) {type} is unexpectedly failed. "
|
|
"(2) {type} is overloaded. "
|
|
"(3) There's an unexpected network issue. Please check the "
|
|
"{log_command} to find the root cause."
|
|
)
|
|
|
|
|
|
# TODO(sang): Move the class to state/state_manager.py.
|
|
# TODO(sang): Remove *State and replaces with Pydantic or protobuf.
|
|
# (depending on API interface standardization).
|
|
class StateAPIManager:
|
|
"""A class to query states from data source, caches, and post-processes
|
|
the entries.
|
|
"""
|
|
|
|
def __init__(self, state_data_source_client: StateDataSourceClient):
|
|
self._client = state_data_source_client
|
|
|
|
@property
|
|
def data_source_client(self):
|
|
return self._client
|
|
|
|
async def list_actors(self, *, option: ListApiOptions) -> ListApiResponse:
|
|
"""List all actor information from the cluster.
|
|
|
|
Returns:
|
|
{actor_id -> actor_data_in_dict}
|
|
actor_data_in_dict's schema is in ActorState
|
|
|
|
"""
|
|
try:
|
|
reply = await self._client.get_all_actor_info(timeout=option.timeout)
|
|
except DataSourceUnavailable:
|
|
raise DataSourceUnavailable(GCS_QUERY_FAILURE_WARNING)
|
|
|
|
result = []
|
|
for message in reply.actor_table_data:
|
|
data = self._message_to_dict(message=message, fields_to_decode=["actor_id"])
|
|
data = filter_fields(data, ActorState)
|
|
result.append(data)
|
|
|
|
# Sort to make the output deterministic.
|
|
result.sort(key=lambda entry: entry["actor_id"])
|
|
return ListApiResponse(
|
|
result={d["actor_id"]: d for d in islice(result, option.limit)}
|
|
)
|
|
|
|
async def list_placement_groups(self, *, option: ListApiOptions) -> ListApiResponse:
|
|
"""List all placement group information from the cluster.
|
|
|
|
Returns:
|
|
{pg_id -> pg_data_in_dict}
|
|
pg_data_in_dict's schema is in PlacementGroupState
|
|
"""
|
|
try:
|
|
reply = await self._client.get_all_placement_group_info(
|
|
timeout=option.timeout
|
|
)
|
|
except DataSourceUnavailable:
|
|
raise DataSourceUnavailable(GCS_QUERY_FAILURE_WARNING)
|
|
|
|
result = []
|
|
for message in reply.placement_group_table_data:
|
|
|
|
data = self._message_to_dict(
|
|
message=message,
|
|
fields_to_decode=["placement_group_id"],
|
|
)
|
|
data = filter_fields(data, PlacementGroupState)
|
|
result.append(data)
|
|
|
|
# Sort to make the output deterministic.
|
|
result.sort(key=lambda entry: entry["placement_group_id"])
|
|
return ListApiResponse(
|
|
result={d["placement_group_id"]: d for d in islice(result, option.limit)}
|
|
)
|
|
|
|
async def list_nodes(self, *, option: ListApiOptions) -> ListApiResponse:
|
|
"""List all node information from the cluster.
|
|
|
|
Returns:
|
|
{node_id -> node_data_in_dict}
|
|
node_data_in_dict's schema is in NodeState
|
|
"""
|
|
try:
|
|
reply = await self._client.get_all_node_info(timeout=option.timeout)
|
|
except DataSourceUnavailable:
|
|
raise DataSourceUnavailable(GCS_QUERY_FAILURE_WARNING)
|
|
|
|
result = []
|
|
for message in reply.node_info_list:
|
|
data = self._message_to_dict(message=message, fields_to_decode=["node_id"])
|
|
data = filter_fields(data, NodeState)
|
|
result.append(data)
|
|
|
|
# Sort to make the output deterministic.
|
|
result.sort(key=lambda entry: entry["node_id"])
|
|
return ListApiResponse(
|
|
result={d["node_id"]: d for d in islice(result, option.limit)}
|
|
)
|
|
|
|
async def list_workers(self, *, option: ListApiOptions) -> ListApiResponse:
|
|
"""List all worker information from the cluster.
|
|
|
|
Returns:
|
|
{worker_id -> worker_data_in_dict}
|
|
worker_data_in_dict's schema is in WorkerState
|
|
"""
|
|
try:
|
|
reply = await self._client.get_all_worker_info(timeout=option.timeout)
|
|
except DataSourceUnavailable:
|
|
raise DataSourceUnavailable(GCS_QUERY_FAILURE_WARNING)
|
|
|
|
result = []
|
|
for message in reply.worker_table_data:
|
|
data = self._message_to_dict(
|
|
message=message, fields_to_decode=["worker_id"]
|
|
)
|
|
data["worker_id"] = data["worker_address"]["worker_id"]
|
|
data = filter_fields(data, WorkerState)
|
|
result.append(data)
|
|
|
|
# Sort to make the output deterministic.
|
|
result.sort(key=lambda entry: entry["worker_id"])
|
|
return ListApiResponse(
|
|
result={d["worker_id"]: d for d in islice(result, option.limit)}
|
|
)
|
|
|
|
def list_jobs(self, *, option: ListApiOptions) -> ListApiResponse:
|
|
# TODO(sang): Support limit & timeout & async calls.
|
|
try:
|
|
result = self._client.get_job_info()
|
|
except DataSourceUnavailable:
|
|
raise DataSourceUnavailable(GCS_QUERY_FAILURE_WARNING)
|
|
return ListApiResponse(result=result)
|
|
|
|
async def list_tasks(self, *, option: ListApiOptions) -> ListApiResponse:
|
|
"""List all task information from the cluster.
|
|
|
|
Returns:
|
|
{task_id -> task_data_in_dict}
|
|
task_data_in_dict's schema is in TaskState
|
|
"""
|
|
raylet_ids = self._client.get_all_registered_raylet_ids()
|
|
replies = await asyncio.gather(
|
|
*[
|
|
self._client.get_task_info(node_id, timeout=option.timeout)
|
|
for node_id in raylet_ids
|
|
],
|
|
return_exceptions=True,
|
|
)
|
|
|
|
unresponsive_nodes = 0
|
|
running_task_id = set()
|
|
successful_replies = []
|
|
for reply in replies:
|
|
if isinstance(reply, DataSourceUnavailable):
|
|
unresponsive_nodes += 1
|
|
continue
|
|
elif isinstance(reply, Exception):
|
|
raise reply
|
|
|
|
successful_replies.append(reply)
|
|
for task_id in reply.running_task_ids:
|
|
running_task_id.add(binary_to_hex(task_id))
|
|
|
|
partial_failure_warning = None
|
|
if len(raylet_ids) > 0 and unresponsive_nodes > 0:
|
|
warning_msg = NODE_QUERY_FAILURE_WARNING.format(
|
|
type="raylet",
|
|
total=len(raylet_ids),
|
|
network_failures=unresponsive_nodes,
|
|
log_command="raylet.out",
|
|
)
|
|
if unresponsive_nodes == len(raylet_ids):
|
|
raise DataSourceUnavailable(warning_msg)
|
|
partial_failure_warning = (
|
|
f"The returned data may contain incomplete result. {warning_msg}"
|
|
)
|
|
|
|
result = []
|
|
for reply in successful_replies:
|
|
assert not isinstance(reply, Exception)
|
|
tasks = reply.owned_task_info_entries
|
|
for task in tasks:
|
|
data = self._message_to_dict(
|
|
message=task,
|
|
fields_to_decode=["task_id"],
|
|
)
|
|
if data["task_id"] in running_task_id:
|
|
data["scheduling_state"] = TaskStatus.DESCRIPTOR.values_by_number[
|
|
TaskStatus.RUNNING
|
|
].name
|
|
data = filter_fields(data, TaskState)
|
|
result.append(data)
|
|
|
|
# Sort to make the output deterministic.
|
|
result.sort(key=lambda entry: entry["task_id"])
|
|
return ListApiResponse(
|
|
result={d["task_id"]: d for d in islice(result, option.limit)},
|
|
partial_failure_warning=partial_failure_warning,
|
|
)
|
|
|
|
async def list_objects(self, *, option: ListApiOptions) -> ListApiResponse:
|
|
"""List all object information from the cluster.
|
|
|
|
Returns:
|
|
{object_id -> object_data_in_dict}
|
|
object_data_in_dict's schema is in ObjectState
|
|
"""
|
|
raylet_ids = self._client.get_all_registered_raylet_ids()
|
|
replies = await asyncio.gather(
|
|
*[
|
|
self._client.get_object_info(node_id, timeout=option.timeout)
|
|
for node_id in raylet_ids
|
|
],
|
|
return_exceptions=True,
|
|
)
|
|
|
|
unresponsive_nodes = 0
|
|
worker_stats = []
|
|
for reply, node_id in zip(replies, raylet_ids):
|
|
if isinstance(reply, DataSourceUnavailable):
|
|
unresponsive_nodes += 1
|
|
continue
|
|
elif isinstance(reply, Exception):
|
|
raise reply
|
|
|
|
for core_worker_stat in reply.core_workers_stats:
|
|
# NOTE: Set preserving_proto_field_name=False here because
|
|
# `construct_memory_table` requires a dictionary that has
|
|
# modified protobuf name
|
|
# (e.g., workerId instead of worker_id) as a key.
|
|
worker_stats.append(
|
|
self._message_to_dict(
|
|
message=core_worker_stat,
|
|
fields_to_decode=["object_id"],
|
|
preserving_proto_field_name=False,
|
|
)
|
|
)
|
|
|
|
partial_failure_warning = None
|
|
if len(raylet_ids) > 0 and unresponsive_nodes > 0:
|
|
warning_msg = NODE_QUERY_FAILURE_WARNING.format(
|
|
type="raylet",
|
|
total=len(raylet_ids),
|
|
network_failures=unresponsive_nodes,
|
|
log_command="raylet.out",
|
|
)
|
|
if unresponsive_nodes == len(raylet_ids):
|
|
raise DataSourceUnavailable(warning_msg)
|
|
partial_failure_warning = (
|
|
f"The returned data may contain incomplete result. {warning_msg}"
|
|
)
|
|
|
|
result = []
|
|
memory_table = memory_utils.construct_memory_table(worker_stats)
|
|
for entry in memory_table.table:
|
|
data = entry.as_dict()
|
|
# `construct_memory_table` returns object_ref field which is indeed
|
|
# object_id. We do transformation here.
|
|
# TODO(sang): Refactor `construct_memory_table`.
|
|
data["object_id"] = data["object_ref"]
|
|
del data["object_ref"]
|
|
data = filter_fields(data, ObjectState)
|
|
result.append(data)
|
|
|
|
# Sort to make the output deterministic.
|
|
result.sort(key=lambda entry: entry["object_id"])
|
|
return ListApiResponse(
|
|
result={d["object_id"]: d for d in islice(result, option.limit)},
|
|
partial_failure_warning=partial_failure_warning,
|
|
)
|
|
|
|
async def list_runtime_envs(self, *, option: ListApiOptions) -> ListApiResponse:
|
|
"""List all runtime env information from the cluster.
|
|
|
|
Returns:
|
|
A list of runtime env information in the cluster.
|
|
The schema of returned "dict" is equivalent to the
|
|
`RuntimeEnvState` protobuf message.
|
|
We don't have id -> data mapping like other API because runtime env
|
|
doesn't have unique ids.
|
|
"""
|
|
agent_ids = self._client.get_all_registered_agent_ids()
|
|
replies = await asyncio.gather(
|
|
*[
|
|
self._client.get_runtime_envs_info(node_id, timeout=option.timeout)
|
|
for node_id in agent_ids
|
|
],
|
|
return_exceptions=True,
|
|
)
|
|
|
|
result = []
|
|
unresponsive_nodes = 0
|
|
for node_id, reply in zip(self._client.get_all_registered_agent_ids(), replies):
|
|
if isinstance(reply, DataSourceUnavailable):
|
|
unresponsive_nodes += 1
|
|
continue
|
|
elif isinstance(reply, Exception):
|
|
raise reply
|
|
|
|
states = reply.runtime_env_states
|
|
for state in states:
|
|
data = self._message_to_dict(message=state, fields_to_decode=[])
|
|
# Need to deseiralize this field.
|
|
data["runtime_env"] = RuntimeEnv.deserialize(
|
|
data["runtime_env"]
|
|
).to_dict()
|
|
data["node_id"] = node_id
|
|
data = filter_fields(data, RuntimeEnvState)
|
|
result.append(data)
|
|
|
|
partial_failure_warning = None
|
|
if len(agent_ids) > 0 and unresponsive_nodes > 0:
|
|
warning_msg = NODE_QUERY_FAILURE_WARNING.format(
|
|
type="agent",
|
|
total=len(agent_ids),
|
|
network_failures=unresponsive_nodes,
|
|
log_command="dashboard_agent.log",
|
|
)
|
|
if unresponsive_nodes == len(agent_ids):
|
|
raise DataSourceUnavailable(warning_msg)
|
|
partial_failure_warning = (
|
|
f"The returned data may contain incomplete result. {warning_msg}"
|
|
)
|
|
|
|
# Sort to make the output deterministic.
|
|
def sort_func(entry):
|
|
# If creation time is not there yet (runtime env is failed
|
|
# to be created or not created yet, they are the highest priority.
|
|
# Otherwise, "bigger" creation time is coming first.
|
|
if "creation_time_ms" not in entry:
|
|
return float("inf")
|
|
elif entry["creation_time_ms"] is None:
|
|
return float("inf")
|
|
else:
|
|
return float(entry["creation_time_ms"])
|
|
|
|
result.sort(key=sort_func, reverse=True)
|
|
return ListApiResponse(
|
|
result=list(islice(result, option.limit)),
|
|
partial_failure_warning=partial_failure_warning,
|
|
)
|
|
|
|
def _message_to_dict(
|
|
self,
|
|
*,
|
|
message,
|
|
fields_to_decode: List[str],
|
|
preserving_proto_field_name: bool = True,
|
|
) -> dict:
|
|
return dashboard_utils.message_to_dict(
|
|
message,
|
|
fields_to_decode,
|
|
including_default_value_fields=True,
|
|
preserving_proto_field_name=preserving_proto_field_name,
|
|
)
|