mirror of
https://github.com/vale981/ray
synced 2025-03-09 12:56:46 -04:00

Cleans up of the rllib/examples folder by moving all example Envs into rllibexamples/env (so they can be used by other scripts and tests as well).
58 lines
1.9 KiB
Python
58 lines
1.9 KiB
Python
import argparse
|
|
from gym.spaces import Dict, Tuple, Box, Discrete
|
|
import sys
|
|
|
|
import ray
|
|
from ray.tune.registry import register_env
|
|
from ray.rllib.examples.env.nested_space_repeat_after_me_env import \
|
|
NestedSpaceRepeatAfterMeEnv
|
|
from ray.rllib.utils import try_import_tree
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
|
|
tf = try_import_tf()
|
|
tree = try_import_tree()
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--run", type=str, default="PPO")
|
|
parser.add_argument("--torch", action="store_true")
|
|
parser.add_argument("--stop", type=int, default=90)
|
|
parser.add_argument("--max-trainstop", type=int, default=90)
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
ray.init(num_cpus=args.num_cpus or None)
|
|
register_env("NestedSpaceRepeatAfterMeEnv",
|
|
lambda c: NestedSpaceRepeatAfterMeEnv(c))
|
|
|
|
config = {
|
|
"env": "NestedSpaceRepeatAfterMeEnv",
|
|
"env_config": {
|
|
"space": Dict({
|
|
"a": Tuple(
|
|
[Dict({
|
|
"d": Box(-10.0, 10.0, ()),
|
|
"e": Discrete(2)
|
|
})]),
|
|
"b": Box(-10.0, 10.0, (2, )),
|
|
"c": Discrete(4)
|
|
}),
|
|
},
|
|
"entropy_coeff": 0.00005, # We don't want high entropy in this Env.
|
|
"gamma": 0.0, # No history in Env (bandit problem).
|
|
"lr": 0.0003,
|
|
"num_envs_per_worker": 20,
|
|
"num_sgd_iter": 20,
|
|
"num_workers": 0,
|
|
"use_pytorch": args.torch,
|
|
"vf_loss_coeff": 0.01,
|
|
}
|
|
|
|
import ray.rllib.agents.ppo as ppo
|
|
trainer = ppo.PPOTrainer(config=config)
|
|
for _ in range(100):
|
|
results = trainer.train()
|
|
print(results)
|
|
if results["episode_reward_mean"] > args.stop:
|
|
sys.exit(0) # Learnt, exit gracefully.
|
|
sys.exit(1) # Done, but did not learn, exit with error.
|