mirror of
https://github.com/vale981/ray
synced 2025-03-09 12:56:46 -04:00
123 lines
4.1 KiB
Python
123 lines
4.1 KiB
Python
import argparse
|
|
import random
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.agents.trainer_template import build_trainer
|
|
from ray.rllib.models import ModelCatalog
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.models.tf.fcnet_v2 import FullyConnectedNetwork
|
|
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.tf_policy_template import build_tf_policy
|
|
from ray.rllib.utils import try_import_tf
|
|
from ray.rllib.utils.annotations import override
|
|
|
|
tf = try_import_tf()
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--iters", type=int, default=200)
|
|
|
|
|
|
class EagerModel(TFModelV2):
|
|
"""Example of using embedded eager execution in a custom model.
|
|
|
|
This shows how to use tf.py_function() to execute a snippet of TF code
|
|
in eager mode. Here the `self.forward_eager` method just prints out
|
|
the intermediate tensor for debug purposes, but you can in general
|
|
perform any TF eager operation in tf.py_function().
|
|
"""
|
|
|
|
def __init__(self, observation_space, action_space, num_outputs,
|
|
model_config, name):
|
|
super().__init__(observation_space, action_space, num_outputs,
|
|
model_config, name)
|
|
|
|
inputs = tf.keras.layers.Input(shape=observation_space.shape)
|
|
self.fcnet = FullyConnectedNetwork(
|
|
obs_space=self.obs_space,
|
|
action_space=self.action_space,
|
|
num_outputs=self.num_outputs,
|
|
model_config=self.model_config,
|
|
name="fc1")
|
|
out, value_out = self.fcnet.base_model(inputs)
|
|
|
|
def lambda_(x):
|
|
eager_out = tf.py_function(self.forward_eager, [x], tf.float32)
|
|
with tf.control_dependencies([eager_out]):
|
|
eager_out.set_shape(x.shape)
|
|
return eager_out
|
|
|
|
out = tf.keras.layers.Lambda(lambda_)(out)
|
|
self.base_model = tf.keras.models.Model(inputs, [out, value_out])
|
|
self.register_variables(self.base_model.variables)
|
|
|
|
@override(ModelV2)
|
|
def forward(self, input_dict, state, seq_lens):
|
|
out, self._value_out = self.base_model(input_dict["obs"], state,
|
|
seq_lens)
|
|
return out, []
|
|
|
|
@override(ModelV2)
|
|
def value_function(self):
|
|
return tf.reshape(self._value_out, [-1])
|
|
|
|
def forward_eager(self, feature_layer):
|
|
assert tf.executing_eagerly()
|
|
if random.random() > 0.99:
|
|
print("Eagerly printing the feature layer mean value",
|
|
tf.reduce_mean(feature_layer))
|
|
return feature_layer
|
|
|
|
|
|
def policy_gradient_loss(policy, model, dist_class, train_batch):
|
|
"""Example of using embedded eager execution in a custom loss.
|
|
|
|
Here `compute_penalty` prints the actions and rewards for debugging, and
|
|
also computes a (dummy) penalty term to add to the loss.
|
|
"""
|
|
|
|
def compute_penalty(actions, rewards):
|
|
assert tf.executing_eagerly()
|
|
penalty = tf.reduce_mean(tf.cast(actions, tf.float32))
|
|
if random.random() > 0.9:
|
|
print("The eagerly computed penalty is", penalty, actions, rewards)
|
|
return penalty
|
|
|
|
logits, _ = model.from_batch(train_batch)
|
|
action_dist = dist_class(logits, model)
|
|
|
|
actions = train_batch[SampleBatch.ACTIONS]
|
|
rewards = train_batch[SampleBatch.REWARDS]
|
|
penalty = tf.py_function(
|
|
compute_penalty, [actions, rewards], Tout=tf.float32)
|
|
|
|
return penalty - tf.reduce_mean(action_dist.logp(actions) * rewards)
|
|
|
|
|
|
# <class 'ray.rllib.policy.tf_policy_template.MyTFPolicy'>
|
|
MyTFPolicy = build_tf_policy(
|
|
name="MyTFPolicy",
|
|
loss_fn=policy_gradient_loss,
|
|
)
|
|
|
|
# <class 'ray.rllib.agents.trainer_template.MyCustomTrainer'>
|
|
MyTrainer = build_trainer(
|
|
name="MyCustomTrainer",
|
|
default_policy=MyTFPolicy,
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
ray.init()
|
|
args = parser.parse_args()
|
|
ModelCatalog.register_custom_model("eager_model", EagerModel)
|
|
|
|
config = {
|
|
"env": "CartPole-v0",
|
|
"num_workers": 0,
|
|
"model": {
|
|
"custom_model": "eager_model"
|
|
},
|
|
}
|
|
|
|
tune.run(MyTrainer, stop={"training_iteration": args.iters}, config=config)
|