ray/rllib/utils/schedules/tests/test_schedules.py
2020-05-27 10:59:28 +02:00

93 lines
3.3 KiB
Python

import unittest
from ray.rllib.utils.schedules import ConstantSchedule, \
LinearSchedule, ExponentialSchedule, PiecewiseSchedule
from ray.rllib.utils import check, framework_iterator, try_import_tf
from ray.rllib.utils.from_config import from_config
tf = try_import_tf()
class TestSchedules(unittest.TestCase):
"""
Tests all time-step dependent Schedule classes.
"""
def test_constant_schedule(self):
value = 2.3
ts = [100, 0, 10, 2, 3, 4, 99, 56, 10000, 23, 234, 56]
config = {"value": value}
for fw in framework_iterator(
frameworks=["tf", "eager", "torch", None]):
fw_ = fw if fw != "eager" else "tf"
constant = from_config(ConstantSchedule, config, framework=fw_)
for t in ts:
out = constant(t)
check(out, value)
def test_linear_schedule(self):
ts = [0, 50, 10, 100, 90, 2, 1, 99, 23, 1000]
config = {"schedule_timesteps": 100, "initial_p": 2.1, "final_p": 0.6}
for fw in framework_iterator(
frameworks=["tf", "eager", "torch", None]):
fw_ = fw if fw != "eager" else "tf"
linear = from_config(LinearSchedule, config, framework=fw_)
for t in ts:
out = linear(t)
check(out, 2.1 - (min(t, 100) / 100) * (2.1 - 0.6), decimals=4)
def test_polynomial_schedule(self):
ts = [0, 5, 10, 100, 90, 2, 1, 99, 23, 1000]
config = dict(
type="ray.rllib.utils.schedules.polynomial_schedule."
"PolynomialSchedule",
schedule_timesteps=100,
initial_p=2.0,
final_p=0.5,
power=2.0)
for fw in framework_iterator(
frameworks=["tf", "eager", "torch", None]):
fw_ = fw if fw != "eager" else "tf"
polynomial = from_config(config, framework=fw_)
for t in ts:
out = polynomial(t)
t = min(t, 100)
check(out, 0.5 + (2.0 - 0.5) * (1.0 - t / 100)**2, decimals=4)
def test_exponential_schedule(self):
ts = [0, 5, 10, 100, 90, 2, 1, 99, 23]
config = dict(initial_p=2.0, decay_rate=0.99, schedule_timesteps=100)
for fw in framework_iterator(
frameworks=["tf", "eager", "torch", None]):
fw_ = fw if fw != "eager" else "tf"
exponential = from_config(
ExponentialSchedule, config, framework=fw_)
for t in ts:
out = exponential(t)
check(out, 2.0 * 0.99**(t / 100), decimals=4)
def test_piecewise_schedule(self):
ts = [0, 5, 10, 100, 90, 2, 1, 99, 27]
expected = [50.0, 60.0, 70.0, 14.5, 14.5, 54.0, 52.0, 14.5, 140.0]
config = dict(
endpoints=[(0, 50.0), (25, 100.0), (30, 200.0)],
outside_value=14.5)
for fw in framework_iterator(
frameworks=["tf", "eager", "torch", None]):
fw_ = fw if fw != "eager" else "tf"
piecewise = from_config(PiecewiseSchedule, config, framework=fw_)
for t, e in zip(ts, expected):
out = piecewise(t)
check(out, e, decimals=4)
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))