ray/dashboard/memory_utils.py
SangBin Cho 39b9c44c8d
[State Observability] pre-alpha documentation (#26560)
Adds

Documentation for state APIs
API reference
2022-07-26 05:49:28 -07:00

522 lines
18 KiB
Python

import base64
import logging
from collections import defaultdict
from enum import Enum
from typing import List
import ray
from ray._private.internal_api import node_stats
from ray._raylet import ActorID, JobID, TaskID
logger = logging.getLogger(__name__)
# These values are used to calculate if objectRefs are actor handles.
TASKID_BYTES_SIZE = TaskID.size()
ACTORID_BYTES_SIZE = ActorID.size()
JOBID_BYTES_SIZE = JobID.size()
# We need to multiply 2 because we need bits size instead of bytes size.
TASKID_RANDOM_BITS_SIZE = (TASKID_BYTES_SIZE - ACTORID_BYTES_SIZE) * 2
ACTORID_RANDOM_BITS_SIZE = (ACTORID_BYTES_SIZE - JOBID_BYTES_SIZE) * 2
def decode_object_ref_if_needed(object_ref: str) -> bytes:
"""Decode objectRef bytes string.
gRPC reply contains an objectRef that is encodded by Base64.
This function is used to decode the objectRef.
Note that there are times that objectRef is already decoded as
a hex string. In this case, just convert it to a binary number.
"""
if object_ref.endswith("="):
# If the object ref ends with =, that means it is base64 encoded.
# Object refs will always have = as a padding
# when it is base64 encoded because objectRef is always 20B.
return base64.standard_b64decode(object_ref)
else:
return ray._private.utils.hex_to_binary(object_ref)
class SortingType(Enum):
PID = 1
OBJECT_SIZE = 3
REFERENCE_TYPE = 4
class GroupByType(Enum):
NODE_ADDRESS = "node"
STACK_TRACE = "stack_trace"
class ReferenceType(Enum):
# We don't use enum because enum is not json serializable.
ACTOR_HANDLE = "ACTOR_HANDLE"
PINNED_IN_MEMORY = "PINNED_IN_MEMORY"
LOCAL_REFERENCE = "LOCAL_REFERENCE"
USED_BY_PENDING_TASK = "USED_BY_PENDING_TASK"
CAPTURED_IN_OBJECT = "CAPTURED_IN_OBJECT"
UNKNOWN_STATUS = "UNKNOWN_STATUS"
def get_sorting_type(sort_by: str):
"""Translate string input into SortingType instance"""
sort_by = sort_by.upper()
if sort_by == "PID":
return SortingType.PID
elif sort_by == "OBJECT_SIZE":
return SortingType.OBJECT_SIZE
elif sort_by == "REFERENCE_TYPE":
return SortingType.REFERENCE_TYPE
else:
raise Exception(
"The sort-by input provided is not one of\
PID, OBJECT_SIZE, or REFERENCE_TYPE."
)
def get_group_by_type(group_by: str):
"""Translate string input into GroupByType instance"""
group_by = group_by.upper()
if group_by == "NODE_ADDRESS":
return GroupByType.NODE_ADDRESS
elif group_by == "STACK_TRACE":
return GroupByType.STACK_TRACE
else:
raise Exception(
"The group-by input provided is not one of\
NODE_ADDRESS or STACK_TRACE."
)
class MemoryTableEntry:
def __init__(
self, *, object_ref: dict, node_address: str, is_driver: bool, pid: int
):
# worker info
self.is_driver = is_driver
self.pid = pid
self.node_address = node_address
# object info
self.task_status = object_ref.get("taskStatus", "?")
if self.task_status == "NIL":
self.task_status = "-"
self.attempt_number = int(object_ref.get("attemptNumber", 0))
if self.attempt_number > 0:
self.task_status = f"Attempt #{self.attempt_number + 1}: {self.task_status}"
self.object_size = int(object_ref.get("objectSize", -1))
self.call_site = object_ref.get("callSite", "<Unknown>")
if len(self.call_site) == 0:
self.call_site = "disabled"
self.object_ref = ray.ObjectRef(
decode_object_ref_if_needed(object_ref["objectId"])
)
# reference info
self.local_ref_count = int(object_ref.get("localRefCount", 0))
self.pinned_in_memory = bool(object_ref.get("pinnedInMemory", False))
self.submitted_task_ref_count = int(object_ref.get("submittedTaskRefCount", 0))
self.contained_in_owned = [
ray.ObjectRef(decode_object_ref_if_needed(object_ref))
for object_ref in object_ref.get("containedInOwned", [])
]
self.reference_type = self._get_reference_type()
def is_valid(self) -> bool:
# If the entry doesn't have a reference type or some invalid state,
# (e.g., no object ref presented), it is considered invalid.
if (
not self.pinned_in_memory
and self.local_ref_count == 0
and self.submitted_task_ref_count == 0
and len(self.contained_in_owned) == 0
):
return False
elif self.object_ref.is_nil():
return False
else:
return True
def group_key(self, group_by_type: GroupByType) -> str:
if group_by_type == GroupByType.NODE_ADDRESS:
return self.node_address
elif group_by_type == GroupByType.STACK_TRACE:
return self.call_site
else:
raise ValueError(f"group by type {group_by_type} is invalid.")
def _get_reference_type(self) -> str:
if self._is_object_ref_actor_handle():
return ReferenceType.ACTOR_HANDLE.value
if self.pinned_in_memory:
return ReferenceType.PINNED_IN_MEMORY.value
elif self.submitted_task_ref_count > 0:
return ReferenceType.USED_BY_PENDING_TASK.value
elif self.local_ref_count > 0:
return ReferenceType.LOCAL_REFERENCE.value
elif len(self.contained_in_owned) > 0:
return ReferenceType.CAPTURED_IN_OBJECT.value
else:
return ReferenceType.UNKNOWN_STATUS.value
def _is_object_ref_actor_handle(self) -> bool:
object_ref_hex = self.object_ref.hex()
# random (8B) | ActorID(6B) | flag (2B) | index (6B)
# ActorID(6B) == ActorRandomByte(4B) + JobID(2B)
# If random bytes are all 'f', but ActorRandomBytes
# are not all 'f', that means it is an actor creation
# task, which is an actor handle.
random_bits = object_ref_hex[:TASKID_RANDOM_BITS_SIZE]
actor_random_bits = object_ref_hex[
TASKID_RANDOM_BITS_SIZE : TASKID_RANDOM_BITS_SIZE + ACTORID_RANDOM_BITS_SIZE
]
if random_bits == "f" * 16 and not actor_random_bits == "f" * 24:
return True
else:
return False
def as_dict(self):
return {
"object_ref": self.object_ref.hex(),
"pid": self.pid,
"node_ip_address": self.node_address,
"object_size": self.object_size,
"reference_type": self.reference_type,
"call_site": self.call_site,
"task_status": self.task_status,
"local_ref_count": self.local_ref_count,
"pinned_in_memory": self.pinned_in_memory,
"submitted_task_ref_count": self.submitted_task_ref_count,
"contained_in_owned": [
object_ref.hex() for object_ref in self.contained_in_owned
],
"type": "Driver" if self.is_driver else "Worker",
}
def __str__(self):
return self.__repr__()
def __repr__(self):
return str(self.as_dict())
class MemoryTable:
def __init__(
self,
entries: List[MemoryTableEntry],
group_by_type: GroupByType = GroupByType.NODE_ADDRESS,
sort_by_type: SortingType = SortingType.PID,
):
self.table = entries
# Group is a list of memory tables grouped by a group key.
self.group = {}
self.summary = defaultdict(int)
# NOTE YOU MUST SORT TABLE BEFORE GROUPING.
# self._group_by(..)._sort_by(..) != self._sort_by(..)._group_by(..)
if group_by_type and sort_by_type:
self.setup(group_by_type, sort_by_type)
elif group_by_type:
self._group_by(group_by_type)
elif sort_by_type:
self._sort_by(sort_by_type)
def setup(self, group_by_type: GroupByType, sort_by_type: SortingType):
"""Setup memory table.
This will sort entries first and group them after.
Sort order will be still kept.
"""
self._sort_by(sort_by_type)._group_by(group_by_type)
for group_memory_table in self.group.values():
group_memory_table.summarize()
self.summarize()
return self
def insert_entry(self, entry: MemoryTableEntry):
self.table.append(entry)
def summarize(self):
# Reset summary.
total_object_size = 0
total_local_ref_count = 0
total_pinned_in_memory = 0
total_used_by_pending_task = 0
total_captured_in_objects = 0
total_actor_handles = 0
for entry in self.table:
if entry.object_size > 0:
total_object_size += entry.object_size
if entry.reference_type == ReferenceType.LOCAL_REFERENCE.value:
total_local_ref_count += 1
elif entry.reference_type == ReferenceType.PINNED_IN_MEMORY.value:
total_pinned_in_memory += 1
elif entry.reference_type == ReferenceType.USED_BY_PENDING_TASK.value:
total_used_by_pending_task += 1
elif entry.reference_type == ReferenceType.CAPTURED_IN_OBJECT.value:
total_captured_in_objects += 1
elif entry.reference_type == ReferenceType.ACTOR_HANDLE.value:
total_actor_handles += 1
self.summary = {
"total_object_size": total_object_size,
"total_local_ref_count": total_local_ref_count,
"total_pinned_in_memory": total_pinned_in_memory,
"total_used_by_pending_task": total_used_by_pending_task,
"total_captured_in_objects": total_captured_in_objects,
"total_actor_handles": total_actor_handles,
}
return self
def _sort_by(self, sorting_type: SortingType):
if sorting_type == SortingType.PID:
self.table.sort(key=lambda entry: entry.pid)
elif sorting_type == SortingType.OBJECT_SIZE:
self.table.sort(key=lambda entry: entry.object_size)
elif sorting_type == SortingType.REFERENCE_TYPE:
self.table.sort(key=lambda entry: entry.reference_type)
else:
raise ValueError(f"Give sorting type: {sorting_type} is invalid.")
return self
def _group_by(self, group_by_type: GroupByType):
"""Group entries and summarize the result.
NOTE: Each group is another MemoryTable.
"""
# Reset group
self.group = {}
# Build entries per group.
group = defaultdict(list)
for entry in self.table:
group[entry.group_key(group_by_type)].append(entry)
# Build a group table.
for group_key, entries in group.items():
self.group[group_key] = MemoryTable(
entries, group_by_type=None, sort_by_type=None
)
for group_key, group_memory_table in self.group.items():
group_memory_table.summarize()
return self
def as_dict(self):
return {
"summary": self.summary,
"group": {
group_key: {
"entries": group_memory_table.get_entries(),
"summary": group_memory_table.summary,
}
for group_key, group_memory_table in self.group.items()
},
}
def get_entries(self) -> List[dict]:
return [entry.as_dict() for entry in self.table]
def __repr__(self):
return str(self.as_dict())
def __str__(self):
return self.__repr__()
def construct_memory_table(
workers_stats: List,
group_by: GroupByType = GroupByType.NODE_ADDRESS,
sort_by=SortingType.OBJECT_SIZE,
) -> MemoryTable:
memory_table_entries = []
for core_worker_stats in workers_stats:
pid = core_worker_stats["pid"]
is_driver = core_worker_stats.get("workerType") == "DRIVER"
node_address = core_worker_stats["ipAddress"]
object_refs = core_worker_stats.get("objectRefs", [])
for object_ref in object_refs:
memory_table_entry = MemoryTableEntry(
object_ref=object_ref,
node_address=node_address,
is_driver=is_driver,
pid=pid,
)
if memory_table_entry.is_valid():
memory_table_entries.append(memory_table_entry)
memory_table = MemoryTable(
memory_table_entries, group_by_type=group_by, sort_by_type=sort_by
)
return memory_table
def track_reference_size(group):
"""Returns dictionary mapping reference type
to memory usage for a given memory table group."""
d = defaultdict(int)
table_name = {
"LOCAL_REFERENCE": "total_local_ref_count",
"PINNED_IN_MEMORY": "total_pinned_in_memory",
"USED_BY_PENDING_TASK": "total_used_by_pending_task",
"CAPTURED_IN_OBJECT": "total_captured_in_objects",
"ACTOR_HANDLE": "total_actor_handles",
}
for entry in group["entries"]:
size = entry["object_size"]
if size == -1:
# size not recorded
size = 0
d[table_name[entry["reference_type"]]] += size
return d
def memory_summary(
state,
group_by="NODE_ADDRESS",
sort_by="OBJECT_SIZE",
line_wrap=True,
unit="B",
num_entries=None,
) -> str:
# Get terminal size
import shutil
from ray.dashboard.modules.node.node_head import node_stats_to_dict
size = shutil.get_terminal_size((80, 20)).columns
line_wrap_threshold = 137
# Unit conversions
units = {"B": 10 ** 0, "KB": 10 ** 3, "MB": 10 ** 6, "GB": 10 ** 9}
# Fetch core memory worker stats, store as a dictionary
core_worker_stats = []
for raylet in state.node_table():
if not raylet["Alive"]:
continue
try:
stats = node_stats_to_dict(
node_stats(raylet["NodeManagerAddress"], raylet["NodeManagerPort"])
)
except RuntimeError:
continue
core_worker_stats.extend(stats["coreWorkersStats"])
assert type(stats) is dict and "coreWorkersStats" in stats
# Build memory table with "group_by" and "sort_by" parameters
group_by, sort_by = get_group_by_type(group_by), get_sorting_type(sort_by)
memory_table = construct_memory_table(
core_worker_stats, group_by, sort_by
).as_dict()
assert "summary" in memory_table and "group" in memory_table
# Build memory summary
mem = ""
group_by, sort_by = group_by.name.lower().replace(
"_", " "
), sort_by.name.lower().replace("_", " ")
summary_labels = [
"Mem Used by Objects",
"Local References",
"Pinned",
"Used by task",
"Captured in Objects",
"Actor Handles",
]
summary_string = "{:<19} {:<16} {:<12} {:<13} {:<19} {:<13}\n"
object_ref_labels = [
"IP Address",
"PID",
"Type",
"Call Site",
"Status",
"Size",
"Reference Type",
"Object Ref",
]
object_ref_string = "{:<13} | {:<8} | {:<7} | {:<9} \
| {:<9} | {:<8} | {:<14} | {:<10}\n"
if size > line_wrap_threshold and line_wrap:
object_ref_string = "{:<15} {:<5} {:<6} {:<22} {:<14} {:<6} {:<18} \
{:<56}\n"
mem += f"Grouping by {group_by}...\
Sorting by {sort_by}...\
Display {num_entries if num_entries is not None else 'all'}\
entries per group...\n\n\n"
for key, group in memory_table["group"].items():
# Group summary
summary = group["summary"]
ref_size = track_reference_size(group)
for k, v in summary.items():
if k == "total_object_size":
summary[k] = str(v / units[unit]) + f" {unit}"
else:
summary[k] = str(v) + f", ({ref_size[k] / units[unit]} {unit})"
mem += f"--- Summary for {group_by}: {key} ---\n"
mem += summary_string.format(*summary_labels)
mem += summary_string.format(*summary.values()) + "\n"
# Memory table per group
mem += f"--- Object references for {group_by}: {key} ---\n"
mem += object_ref_string.format(*object_ref_labels)
n = 1 # Counter for num entries per group
for entry in group["entries"]:
if num_entries is not None and n > num_entries:
break
entry["object_size"] = (
str(entry["object_size"] / units[unit]) + f" {unit}"
if entry["object_size"] > -1
else "?"
)
num_lines = 1
if size > line_wrap_threshold and line_wrap:
call_site_length = 22
if len(entry["call_site"]) == 0:
entry["call_site"] = ["disabled"]
else:
entry["call_site"] = [
entry["call_site"][i : i + call_site_length]
for i in range(0, len(entry["call_site"]), call_site_length)
]
task_status_length = 12
entry["task_status"] = [
entry["task_status"][i : i + task_status_length]
for i in range(0, len(entry["task_status"]), task_status_length)
]
num_lines = max(len(entry["call_site"]), len(entry["task_status"]))
else:
mem += "\n"
object_ref_values = [
entry["node_ip_address"],
entry["pid"],
entry["type"],
entry["call_site"],
entry["task_status"],
entry["object_size"],
entry["reference_type"],
entry["object_ref"],
]
for i in range(len(object_ref_values)):
if not isinstance(object_ref_values[i], list):
object_ref_values[i] = [object_ref_values[i]]
object_ref_values[i].extend(
["" for x in range(num_lines - len(object_ref_values[i]))]
)
for i in range(num_lines):
row = [elem[i] for elem in object_ref_values]
mem += object_ref_string.format(*row)
mem += "\n"
n += 1
mem += (
"To record callsite information for each ObjectRef created, set "
"env variable RAY_record_ref_creation_sites=1\n\n"
)
return mem