mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
138 lines
4.4 KiB
Python
138 lines
4.4 KiB
Python
import gym
|
|
import unittest
|
|
|
|
import ray
|
|
from ray.rllib import _register_all
|
|
from ray.rllib.agents.registry import get_trainer_class
|
|
from ray.rllib.utils.test_utils import framework_iterator
|
|
from ray.tune.registry import register_env
|
|
|
|
|
|
class FaultInjectEnv(gym.Env):
|
|
"""Env that fails upon calling `step()`, but only for some remote workers.
|
|
|
|
The worker indices that should produce the failure (a ValueError) can be
|
|
provided by a list (of ints) under the "bad_indices" key in the env's
|
|
config.
|
|
|
|
Examples:
|
|
>>> from ray.rllib.env.env_context import EnvContext
|
|
>>> # This env will fail for workers 1 and 2 (not for the local worker
|
|
>>> # or any others with an index > 2).
|
|
>>> bad_env = FaultInjectEnv(
|
|
... EnvContext({"bad_indices": [1, 2]},
|
|
... worker_index=1, num_workers=3))
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.env = gym.make("CartPole-v0")
|
|
self.action_space = self.env.action_space
|
|
self.observation_space = self.env.observation_space
|
|
self.config = config
|
|
|
|
def reset(self):
|
|
return self.env.reset()
|
|
|
|
def step(self, action):
|
|
if self.config.worker_index in self.config["bad_indices"]:
|
|
raise ValueError("This is a simulated error from "
|
|
f"worker-idx={self.config.worker_index}.")
|
|
return self.env.step(action)
|
|
|
|
|
|
class IgnoresWorkerFailure(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls) -> None:
|
|
ray.init()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls) -> None:
|
|
ray.shutdown()
|
|
|
|
def do_test(self, alg, config, fn=None):
|
|
fn = fn or self._do_test_fault_recover
|
|
try:
|
|
ray.init(num_cpus=6, ignore_reinit_error=True)
|
|
fn(alg, config)
|
|
finally:
|
|
ray.shutdown()
|
|
_register_all() # re-register the evicted objects
|
|
|
|
def _do_test_fault_recover(self, alg, config):
|
|
register_env("fault_env", lambda c: FaultInjectEnv(c))
|
|
agent_cls = get_trainer_class(alg)
|
|
|
|
# Test fault handling
|
|
config["num_workers"] = 2
|
|
config["ignore_worker_failures"] = True
|
|
# Make worker idx=1 fail. Other workers will be ok.
|
|
config["env_config"] = {"bad_indices": [1]}
|
|
|
|
for _ in framework_iterator(config, frameworks=("torch", "tf")):
|
|
a = agent_cls(config=config, env="fault_env")
|
|
result = a.train()
|
|
self.assertTrue(result["num_healthy_workers"], 1)
|
|
a.stop()
|
|
|
|
def _do_test_fault_fatal(self, alg, config):
|
|
register_env("fault_env", lambda c: FaultInjectEnv(c))
|
|
agent_cls = get_trainer_class(alg)
|
|
|
|
# Test raises real error when out of workers
|
|
config["num_workers"] = 2
|
|
config["ignore_worker_failures"] = True
|
|
# Make both worker idx=1 and 2 fail.
|
|
config["env_config"] = {"bad_indices": [1, 2]}
|
|
|
|
for _ in framework_iterator(config, frameworks=("torch", "tf")):
|
|
a = agent_cls(config=config, env="fault_env")
|
|
self.assertRaises(Exception, lambda: a.train())
|
|
a.stop()
|
|
|
|
def test_fatal(self):
|
|
# test the case where all workers fail
|
|
self.do_test("PG", {"optimizer": {}}, fn=self._do_test_fault_fatal)
|
|
|
|
def test_async_grads(self):
|
|
self.do_test("A3C", {"optimizer": {"grads_per_step": 1}})
|
|
|
|
def test_async_replay(self):
|
|
self.do_test(
|
|
"APEX", {
|
|
"timesteps_per_iteration": 1000,
|
|
"num_gpus": 0,
|
|
"min_iter_time_s": 1,
|
|
"explore": False,
|
|
"learning_starts": 1000,
|
|
"target_network_update_freq": 100,
|
|
"optimizer": {
|
|
"num_replay_buffer_shards": 1,
|
|
},
|
|
})
|
|
|
|
def test_async_samples(self):
|
|
self.do_test("IMPALA", {"num_gpus": 0})
|
|
|
|
def test_sync_replay(self):
|
|
self.do_test("DQN", {"timesteps_per_iteration": 1})
|
|
|
|
def test_multi_g_p_u(self):
|
|
self.do_test(
|
|
"PPO", {
|
|
"num_sgd_iter": 1,
|
|
"train_batch_size": 10,
|
|
"rollout_fragment_length": 10,
|
|
"sgd_minibatch_size": 1,
|
|
})
|
|
|
|
def test_sync_samples(self):
|
|
self.do_test("PG", {"optimizer": {}})
|
|
|
|
def test_async_sampling_option(self):
|
|
self.do_test("PG", {"optimizer": {}, "sample_async": True})
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
sys.exit(pytest.main(["-v", __file__]))
|