ray/rllib/utils/exploration/random.py
Sven Mika 1775e89f26
[RLlib] Remove TupleActions and support arbitrarily nested action spaces. (#8143)
Deprecate TupleActions and support arbitrarily nested action spaces.
Closes issue #8143.
2020-04-28 14:59:16 +02:00

98 lines
3.8 KiB
Python

from gym.spaces import Discrete, MultiDiscrete, Tuple
import numpy as np
import tree
from typing import Union
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.utils.annotations import override
from ray.rllib.utils.exploration.exploration import Exploration
from ray.rllib.utils import force_tuple
from ray.rllib.utils.framework import try_import_tf, try_import_torch, \
TensorType
tf = try_import_tf()
torch, _ = try_import_torch()
class Random(Exploration):
"""A random action selector (deterministic/greedy for explore=False).
If explore=True, returns actions randomly from `self.action_space` (via
Space.sample()).
If explore=False, returns the greedy/max-likelihood action.
"""
def __init__(self, action_space, *, model, framework, **kwargs):
"""Initialize a Random Exploration object.
Args:
action_space (Space): The gym action space used by the environment.
framework (Optional[str]): One of None, "tf", "torch".
"""
super().__init__(
action_space=action_space,
model=model,
framework=framework,
**kwargs)
# Determine py_func types, depending on our action-space.
if isinstance(self.action_space, (Discrete, MultiDiscrete)) or \
(isinstance(self.action_space, Tuple) and
isinstance(self.action_space[0], (Discrete, MultiDiscrete))):
self.dtype_sample, self.dtype = (tf.int64, tf.int32)
else:
self.dtype_sample, self.dtype = (tf.float64, tf.float32)
@override(Exploration)
def get_exploration_action(self,
*,
action_distribution: ActionDistribution,
timestep: Union[int, TensorType],
explore: bool = True):
# Instantiate the distribution object.
if self.framework == "tf":
return self.get_tf_exploration_action_op(action_distribution,
explore)
else:
return self.get_torch_exploration_action(action_distribution,
explore)
def get_tf_exploration_action_op(self, action_dist, explore):
def true_fn():
action = tf.py_function(self.action_space.sample, [],
self.dtype_sample)
# Will be unnecessary, once we support batch/time-aware Spaces.
return tf.expand_dims(tf.cast(action, dtype=self.dtype), 0)
def false_fn():
return tf.cast(
action_dist.deterministic_sample(), dtype=self.dtype)
action = tf.cond(
pred=tf.constant(explore, dtype=tf.bool)
if isinstance(explore, bool) else explore,
true_fn=true_fn,
false_fn=false_fn)
# TODO(sven): Move into (deterministic_)sample(logp=True|False)
batch_size = tf.shape(tree.flatten(action)[0])[0]
logp = tf.zeros(shape=(batch_size, ), dtype=tf.float32)
return action, logp
def get_torch_exploration_action(self, action_dist, explore):
if explore:
# Unsqueeze will be unnecessary, once we support batch/time-aware
# Spaces.
a = self.action_space.sample()
req = force_tuple(
action_dist.required_model_output_shape(
self.action_space, self.model.model_config))
# Add a batch dimension.
if len(action_dist.inputs.shape) == len(req) + 1:
a = np.expand_dims(a, 0)
action = torch.from_numpy(a).to(self.device)
else:
action = action_dist.deterministic_sample()
logp = torch.zeros(
(action.size()[0], ), dtype=torch.float32, device=self.device)
return action, logp