ray/rllib/policy/tf_policy.py

1238 lines
51 KiB
Python

import errno
import gym
import logging
import math
import numpy as np
import os
import tree # pip install dm_tree
from typing import Dict, List, Optional, Tuple, Union, TYPE_CHECKING
import ray
import ray.experimental.tf_utils
from ray.util.debug import log_once
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.rnn_sequencing import pad_batch_to_sequences_of_same_size
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.utils import force_list
from ray.rllib.utils.annotations import DeveloperAPI, override
from ray.rllib.utils.debug import summarize
from ray.rllib.utils.deprecation import Deprecated, deprecation_warning
from ray.rllib.utils.framework import try_import_tf, get_variable
from ray.rllib.utils.metrics.learner_info import LEARNER_STATS_KEY
from ray.rllib.utils.schedules import PiecewiseSchedule
from ray.rllib.utils.spaces.space_utils import normalize_action
from ray.rllib.utils.tf_utils import get_gpu_devices
from ray.rllib.utils.tf_run_builder import TFRunBuilder
from ray.rllib.utils.typing import LocalOptimizer, ModelGradients, \
TensorType, TrainerConfigDict
if TYPE_CHECKING:
from ray.rllib.evaluation import Episode
tf1, tf, tfv = try_import_tf()
logger = logging.getLogger(__name__)
@DeveloperAPI
class TFPolicy(Policy):
"""An agent policy and loss implemented in TensorFlow.
Do not sub-class this class directly (neither should you sub-class
DynamicTFPolicy), but rather use
rllib.policy.tf_policy_template.build_tf_policy
to generate your custom tf (graph-mode or eager) Policy classes.
Extending this class enables RLlib to perform TensorFlow specific
optimizations on the policy, e.g., parallelization across gpus or
fusing multiple graphs together in the multi-agent setting.
Input tensors are typically shaped like [BATCH_SIZE, ...].
Examples:
>>> policy = TFPolicySubclass(
sess, obs_input, sampled_action, loss, loss_inputs)
>>> print(policy.compute_actions([1, 0, 2]))
(array([0, 1, 1]), [], {})
>>> print(policy.postprocess_trajectory(SampleBatch({...})))
SampleBatch({"action": ..., "advantages": ..., ...})
"""
@DeveloperAPI
def __init__(self,
observation_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: TrainerConfigDict,
sess: "tf1.Session",
obs_input: TensorType,
sampled_action: TensorType,
loss: Union[TensorType, List[TensorType]],
loss_inputs: List[Tuple[str, TensorType]],
model: Optional[ModelV2] = None,
sampled_action_logp: Optional[TensorType] = None,
action_input: Optional[TensorType] = None,
log_likelihood: Optional[TensorType] = None,
dist_inputs: Optional[TensorType] = None,
dist_class: Optional[type] = None,
state_inputs: Optional[List[TensorType]] = None,
state_outputs: Optional[List[TensorType]] = None,
prev_action_input: Optional[TensorType] = None,
prev_reward_input: Optional[TensorType] = None,
seq_lens: Optional[TensorType] = None,
max_seq_len: int = 20,
batch_divisibility_req: int = 1,
update_ops: List[TensorType] = None,
explore: Optional[TensorType] = None,
timestep: Optional[TensorType] = None):
"""Initializes a Policy object.
Args:
observation_space: Observation space of the policy.
action_space: Action space of the policy.
config: Policy-specific configuration data.
sess: The TensorFlow session to use.
obs_input: Input placeholder for observations, of shape
[BATCH_SIZE, obs...].
sampled_action: Tensor for sampling an action, of shape
[BATCH_SIZE, action...]
loss: Scalar policy loss output tensor or a list thereof
(in case there is more than one loss).
loss_inputs: A (name, placeholder) tuple for each loss input
argument. Each placeholder name must
correspond to a SampleBatch column key returned by
postprocess_trajectory(), and has shape [BATCH_SIZE, data...].
These keys will be read from postprocessed sample batches and
fed into the specified placeholders during loss computation.
model: The optional ModelV2 to use for calculating actions and
losses. If not None, TFPolicy will provide functionality for
getting variables, calling the model's custom loss (if
provided), and importing weights into the model.
sampled_action_logp: log probability of the sampled action.
action_input: Input placeholder for actions for
logp/log-likelihood calculations.
log_likelihood: Tensor to calculate the log_likelihood (given
action_input and obs_input).
dist_class: An optional ActionDistribution class to use for
generating a dist object from distribution inputs.
dist_inputs: Tensor to calculate the distribution
inputs/parameters.
state_inputs: List of RNN state input Tensors.
state_outputs: List of RNN state output Tensors.
prev_action_input: placeholder for previous actions.
prev_reward_input: placeholder for previous rewards.
seq_lens: Placeholder for RNN sequence lengths, of shape
[NUM_SEQUENCES].
Note that NUM_SEQUENCES << BATCH_SIZE. See
policy/rnn_sequencing.py for more information.
max_seq_len: Max sequence length for LSTM training.
batch_divisibility_req: pad all agent experiences batches to
multiples of this value. This only has an effect if not using
a LSTM model.
update_ops: override the batchnorm update ops
to run when applying gradients. Otherwise we run all update
ops found in the current variable scope.
explore: Placeholder for `explore` parameter into call to
Exploration.get_exploration_action. Explicitly set this to
False for not creating any Exploration component.
timestep: Placeholder for the global sampling timestep.
"""
self.framework = "tf"
super().__init__(observation_space, action_space, config)
# Get devices to build the graph on.
worker_idx = self.config.get("worker_index", 0)
if not config["_fake_gpus"] and \
ray.worker._mode() == ray.worker.LOCAL_MODE:
num_gpus = 0
elif worker_idx == 0:
num_gpus = config["num_gpus"]
else:
num_gpus = config["num_gpus_per_worker"]
gpu_ids = get_gpu_devices()
# Place on one or more CPU(s) when either:
# - Fake GPU mode.
# - num_gpus=0 (either set by user or we are in local_mode=True).
# - no GPUs available.
if config["_fake_gpus"] or num_gpus == 0 or not gpu_ids:
logger.info("TFPolicy (worker={}) running on {}.".format(
worker_idx
if worker_idx > 0 else "local", f"{num_gpus} fake-GPUs"
if config["_fake_gpus"] else "CPU"))
self.devices = [
"/cpu:0" for _ in range(int(math.ceil(num_gpus)) or 1)
]
# Place on one or more actual GPU(s), when:
# - num_gpus > 0 (set by user) AND
# - local_mode=False AND
# - actual GPUs available AND
# - non-fake GPU mode.
else:
logger.info("TFPolicy (worker={}) running on {} GPU(s).".format(
worker_idx if worker_idx > 0 else "local", num_gpus))
# We are a remote worker (WORKER_MODE=1):
# GPUs should be assigned to us by ray.
if ray.worker._mode() == ray.worker.WORKER_MODE:
gpu_ids = ray.get_gpu_ids()
if len(gpu_ids) < num_gpus:
raise ValueError(
"TFPolicy was not able to find enough GPU IDs! Found "
f"{gpu_ids}, but num_gpus={num_gpus}.")
self.devices = [
f"/gpu:{i}" for i, _ in enumerate(gpu_ids) if i < num_gpus
]
# Disable env-info placeholder.
if SampleBatch.INFOS in self.view_requirements:
self.view_requirements[SampleBatch.INFOS].used_for_training = False
self.view_requirements[
SampleBatch.INFOS].used_for_compute_actions = False
assert model is None or isinstance(model, (ModelV2, tf.keras.Model)), \
"Model classes for TFPolicy other than `ModelV2|tf.keras.Model` " \
"not allowed! You passed in {}.".format(model)
self.model = model
# Auto-update model's inference view requirements, if recurrent.
if self.model is not None:
self._update_model_view_requirements_from_init_state()
# If `explore` is explicitly set to False, don't create an exploration
# component.
self.exploration = self._create_exploration() if explore is not False \
else None
self._sess = sess
self._obs_input = obs_input
self._prev_action_input = prev_action_input
self._prev_reward_input = prev_reward_input
self._sampled_action = sampled_action
self._is_training = self._get_is_training_placeholder()
self._is_exploring = explore if explore is not None else \
tf1.placeholder_with_default(True, (), name="is_exploring")
self._sampled_action_logp = sampled_action_logp
self._sampled_action_prob = (tf.math.exp(self._sampled_action_logp)
if self._sampled_action_logp is not None
else None)
self._action_input = action_input # For logp calculations.
self._dist_inputs = dist_inputs
self.dist_class = dist_class
self._state_inputs = state_inputs or []
self._state_outputs = state_outputs or []
self._seq_lens = seq_lens
self._max_seq_len = max_seq_len
if self._state_inputs and self._seq_lens is None:
raise ValueError(
"seq_lens tensor must be given if state inputs are defined")
self._batch_divisibility_req = batch_divisibility_req
self._update_ops = update_ops
self._apply_op = None
self._stats_fetches = {}
self._timestep = timestep if timestep is not None else \
tf1.placeholder_with_default(
tf.zeros((), dtype=tf.int64), (), name="timestep")
self._optimizers: List[LocalOptimizer] = []
# Backward compatibility and for some code shared with tf-eager Policy.
self._optimizer = None
self._grads_and_vars: Union[ModelGradients, List[ModelGradients]] = []
self._grads: Union[ModelGradients, List[ModelGradients]] = []
# Policy tf-variables (weights), whose values to get/set via
# get_weights/set_weights.
self._variables = None
# Local optimizer(s)' tf-variables (e.g. state vars for Adam).
# Will be stored alongside `self._variables` when checkpointing.
self._optimizer_variables: \
Optional[ray.experimental.tf_utils.TensorFlowVariables] = None
# The loss tf-op(s). Number of losses must match number of optimizers.
self._losses = []
# Backward compatibility (in case custom child TFPolicies access this
# property).
self._loss = None
# A batch dict passed into loss function as input.
self._loss_input_dict = {}
losses = force_list(loss)
if len(losses) > 0:
self._initialize_loss(losses, loss_inputs)
# The log-likelihood calculator op.
self._log_likelihood = log_likelihood
if self._log_likelihood is None and self._dist_inputs is not None and \
self.dist_class is not None:
self._log_likelihood = self.dist_class(
self._dist_inputs, self.model).logp(self._action_input)
@override(Policy)
def compute_actions_from_input_dict(
self,
input_dict: Union[SampleBatch, Dict[str, TensorType]],
explore: bool = None,
timestep: Optional[int] = None,
episodes: Optional[List["Episode"]] = None,
**kwargs) -> \
Tuple[TensorType, List[TensorType], Dict[str, TensorType]]:
explore = explore if explore is not None else self.config["explore"]
timestep = timestep if timestep is not None else self.global_timestep
# Switch off is_training flag in our batch.
input_dict["is_training"] = False
builder = TFRunBuilder(self.get_session(),
"compute_actions_from_input_dict")
obs_batch = input_dict[SampleBatch.OBS]
to_fetch = self._build_compute_actions(
builder, input_dict=input_dict, explore=explore, timestep=timestep)
# Execute session run to get action (and other fetches).
fetched = builder.get(to_fetch)
# Update our global timestep by the batch size.
self.global_timestep += len(obs_batch) if isinstance(obs_batch, list) \
else len(input_dict) if isinstance(input_dict, SampleBatch) \
else obs_batch.shape[0]
return fetched
@override(Policy)
def compute_actions(
self,
obs_batch: Union[List[TensorType], TensorType],
state_batches: Optional[List[TensorType]] = None,
prev_action_batch: Union[List[TensorType], TensorType] = None,
prev_reward_batch: Union[List[TensorType], TensorType] = None,
info_batch: Optional[Dict[str, list]] = None,
episodes: Optional[List["Episode"]] = None,
explore: Optional[bool] = None,
timestep: Optional[int] = None,
**kwargs):
explore = explore if explore is not None else self.config["explore"]
timestep = timestep if timestep is not None else self.global_timestep
builder = TFRunBuilder(self.get_session(), "compute_actions")
input_dict = {SampleBatch.OBS: obs_batch, "is_training": False}
if state_batches:
for i, s in enumerate(state_batches):
input_dict[f"state_in_{i}"] = s
if prev_action_batch is not None:
input_dict[SampleBatch.PREV_ACTIONS] = prev_action_batch
if prev_reward_batch is not None:
input_dict[SampleBatch.PREV_REWARDS] = prev_reward_batch
to_fetch = self._build_compute_actions(
builder, input_dict=input_dict, explore=explore, timestep=timestep)
# Execute session run to get action (and other fetches).
fetched = builder.get(to_fetch)
# Update our global timestep by the batch size.
self.global_timestep += \
len(obs_batch) if isinstance(obs_batch, list) \
else tree.flatten(obs_batch)[0].shape[0]
return fetched
@override(Policy)
def compute_log_likelihoods(
self,
actions: Union[List[TensorType], TensorType],
obs_batch: Union[List[TensorType], TensorType],
state_batches: Optional[List[TensorType]] = None,
prev_action_batch: Optional[Union[List[TensorType],
TensorType]] = None,
prev_reward_batch: Optional[Union[List[TensorType],
TensorType]] = None,
actions_normalized: bool = True,
) -> TensorType:
if self._log_likelihood is None:
raise ValueError("Cannot compute log-prob/likelihood w/o a "
"self._log_likelihood op!")
# Exploration hook before each forward pass.
self.exploration.before_compute_actions(
explore=False, tf_sess=self.get_session())
builder = TFRunBuilder(self.get_session(), "compute_log_likelihoods")
# Normalize actions if necessary.
if actions_normalized is False and self.config["normalize_actions"]:
actions = normalize_action(actions, self.action_space_struct)
# Feed actions (for which we want logp values) into graph.
builder.add_feed_dict({self._action_input: actions})
# Feed observations.
builder.add_feed_dict({self._obs_input: obs_batch})
# Internal states.
state_batches = state_batches or []
if len(self._state_inputs) != len(state_batches):
raise ValueError(
"Must pass in RNN state batches for placeholders {}, got {}".
format(self._state_inputs, state_batches))
builder.add_feed_dict(
{k: v
for k, v in zip(self._state_inputs, state_batches)})
if state_batches:
builder.add_feed_dict({self._seq_lens: np.ones(len(obs_batch))})
# Prev-a and r.
if self._prev_action_input is not None and \
prev_action_batch is not None:
builder.add_feed_dict({self._prev_action_input: prev_action_batch})
if self._prev_reward_input is not None and \
prev_reward_batch is not None:
builder.add_feed_dict({self._prev_reward_input: prev_reward_batch})
# Fetch the log_likelihoods output and return.
fetches = builder.add_fetches([self._log_likelihood])
return builder.get(fetches)[0]
@override(Policy)
@DeveloperAPI
def learn_on_batch(
self, postprocessed_batch: SampleBatch) -> Dict[str, TensorType]:
assert self.loss_initialized()
# Switch on is_training flag in our batch.
postprocessed_batch.set_training(True)
builder = TFRunBuilder(self.get_session(), "learn_on_batch")
# Callback handling.
learn_stats = {}
self.callbacks.on_learn_on_batch(
policy=self, train_batch=postprocessed_batch, result=learn_stats)
fetches = self._build_learn_on_batch(builder, postprocessed_batch)
stats = builder.get(fetches)
stats.update({"custom_metrics": learn_stats})
return stats
@override(Policy)
@DeveloperAPI
def compute_gradients(
self,
postprocessed_batch: SampleBatch) -> \
Tuple[ModelGradients, Dict[str, TensorType]]:
assert self.loss_initialized()
# Switch on is_training flag in our batch.
postprocessed_batch.set_training(True)
builder = TFRunBuilder(self.get_session(), "compute_gradients")
fetches = self._build_compute_gradients(builder, postprocessed_batch)
return builder.get(fetches)
@override(Policy)
@DeveloperAPI
def apply_gradients(self, gradients: ModelGradients) -> None:
assert self.loss_initialized()
builder = TFRunBuilder(self.get_session(), "apply_gradients")
fetches = self._build_apply_gradients(builder, gradients)
builder.get(fetches)
@override(Policy)
@DeveloperAPI
def get_weights(self) -> Union[Dict[str, TensorType], List[TensorType]]:
return self._variables.get_weights()
@override(Policy)
@DeveloperAPI
def set_weights(self, weights) -> None:
return self._variables.set_weights(weights)
@override(Policy)
@DeveloperAPI
def get_exploration_state(self) -> Dict[str, TensorType]:
return self.exploration.get_state(sess=self.get_session())
@Deprecated(new="get_exploration_state", error=False)
def get_exploration_info(self) -> Dict[str, TensorType]:
return self.get_exploration_state()
@override(Policy)
@DeveloperAPI
def is_recurrent(self) -> bool:
return len(self._state_inputs) > 0
@override(Policy)
@DeveloperAPI
def num_state_tensors(self) -> int:
return len(self._state_inputs)
@override(Policy)
@DeveloperAPI
def get_state(self) -> Union[Dict[str, TensorType], List[TensorType]]:
# For tf Policies, return Policy weights and optimizer var values.
state = super().get_state()
if len(self._optimizer_variables.variables) > 0:
state["_optimizer_variables"] = \
self.get_session().run(self._optimizer_variables.variables)
# Add exploration state.
state["_exploration_state"] = \
self.exploration.get_state(self.get_session())
return state
@override(Policy)
@DeveloperAPI
def set_state(self, state: dict) -> None:
# Set optimizer vars first.
optimizer_vars = state.get("_optimizer_variables", None)
if optimizer_vars is not None:
self._optimizer_variables.set_weights(optimizer_vars)
# Set exploration's state.
if hasattr(self, "exploration") and "_exploration_state" in state:
self.exploration.set_state(
state=state["_exploration_state"], sess=self.get_session())
# Set the Policy's (NN) weights.
super().set_state(state)
@override(Policy)
@DeveloperAPI
def export_checkpoint(self,
export_dir: str,
filename_prefix: str = "model") -> None:
"""Export tensorflow checkpoint to export_dir."""
try:
os.makedirs(export_dir)
except OSError as e:
# ignore error if export dir already exists
if e.errno != errno.EEXIST:
raise
save_path = os.path.join(export_dir, filename_prefix)
with self.get_session().graph.as_default():
saver = tf1.train.Saver()
saver.save(self.get_session(), save_path)
@override(Policy)
@DeveloperAPI
def export_model(self, export_dir: str,
onnx: Optional[int] = None) -> None:
"""Export tensorflow graph to export_dir for serving."""
if onnx:
try:
import tf2onnx
except ImportError as e:
raise RuntimeError(
"Converting a TensorFlow model to ONNX requires "
"`tf2onnx` to be installed. Install with "
"`pip install tf2onnx`.") from e
with self.get_session().graph.as_default():
signature_def_map = self._build_signature_def()
sd = signature_def_map[tf1.saved_model.signature_constants.
DEFAULT_SERVING_SIGNATURE_DEF_KEY]
inputs = [v.name for k, v in sd.inputs.items()]
outputs = [v.name for k, v in sd.outputs.items()]
from tf2onnx import tf_loader
frozen_graph_def = tf_loader.freeze_session(
self._sess, input_names=inputs, output_names=outputs)
with tf1.Session(graph=tf.Graph()) as session:
tf.import_graph_def(frozen_graph_def, name="")
g = tf2onnx.tfonnx.process_tf_graph(
session.graph,
input_names=inputs,
output_names=outputs,
inputs_as_nchw=inputs)
model_proto = g.make_model("onnx_model")
tf2onnx.utils.save_onnx_model(
export_dir,
"saved_model",
feed_dict={},
model_proto=model_proto)
else:
with self.get_session().graph.as_default():
signature_def_map = self._build_signature_def()
builder = tf1.saved_model.builder.SavedModelBuilder(export_dir)
builder.add_meta_graph_and_variables(
self.get_session(),
[tf1.saved_model.tag_constants.SERVING],
signature_def_map=signature_def_map,
saver=tf1.summary.FileWriter(export_dir).add_graph(
graph=self.get_session().graph))
builder.save()
@override(Policy)
@DeveloperAPI
def import_model_from_h5(self, import_file: str) -> None:
"""Imports weights into tf model."""
if self.model is None:
raise NotImplementedError("No `self.model` to import into!")
# Make sure the session is the right one (see issue #7046).
with self.get_session().graph.as_default():
with self.get_session().as_default():
return self.model.import_from_h5(import_file)
@override(Policy)
def get_session(self) -> Optional["tf1.Session"]:
"""Returns a reference to the TF session for this policy."""
return self._sess
def variables(self):
"""Return the list of all savable variables for this policy."""
if self.model is None:
raise NotImplementedError("No `self.model` to get variables for!")
elif isinstance(self.model, tf.keras.Model):
return self.model.variables
else:
return self.model.variables()
def get_placeholder(self, name) -> "tf1.placeholder":
"""Returns the given action or loss input placeholder by name.
If the loss has not been initialized and a loss input placeholder is
requested, an error is raised.
Args:
name (str): The name of the placeholder to return. One of
SampleBatch.CUR_OBS|PREV_ACTION/REWARD or a valid key from
`self._loss_input_dict`.
Returns:
tf1.placeholder: The placeholder under the given str key.
"""
if name == SampleBatch.CUR_OBS:
return self._obs_input
elif name == SampleBatch.PREV_ACTIONS:
return self._prev_action_input
elif name == SampleBatch.PREV_REWARDS:
return self._prev_reward_input
assert self._loss_input_dict, \
"You need to populate `self._loss_input_dict` before " \
"`get_placeholder()` can be called"
return self._loss_input_dict[name]
def loss_initialized(self) -> bool:
"""Returns whether the loss term(s) have been initialized."""
return len(self._losses) > 0
def _initialize_loss(self, losses: List[TensorType],
loss_inputs: List[Tuple[str, TensorType]]) -> None:
"""Initializes the loss op from given loss tensor and placeholders.
Args:
loss (List[TensorType]): The list of loss ops returned by some
loss function.
loss_inputs (List[Tuple[str, TensorType]]): The list of Tuples:
(name, tf1.placeholders) needed for calculating the loss.
"""
self._loss_input_dict = dict(loss_inputs)
self._loss_input_dict_no_rnn = {
k: v
for k, v in self._loss_input_dict.items()
if (v not in self._state_inputs and v != self._seq_lens)
}
for i, ph in enumerate(self._state_inputs):
self._loss_input_dict["state_in_{}".format(i)] = ph
if self.model and not isinstance(self.model, tf.keras.Model):
self._losses = force_list(
self.model.custom_loss(losses, self._loss_input_dict))
self._stats_fetches.update({"model": self.model.metrics()})
else:
self._losses = losses
# Backward compatibility.
self._loss = self._losses[0] if self._losses is not None else None
if not self._optimizers:
self._optimizers = force_list(self.optimizer())
# Backward compatibility.
self._optimizer = self._optimizers[0] if self._optimizers else None
# Supporting more than one loss/optimizer.
if self.config["_tf_policy_handles_more_than_one_loss"]:
self._grads_and_vars = []
self._grads = []
for group in self.gradients(self._optimizers, self._losses):
g_and_v = [(g, v) for (g, v) in group if g is not None]
self._grads_and_vars.append(g_and_v)
self._grads.append([g for (g, _) in g_and_v])
# Only one optimizer and and loss term.
else:
self._grads_and_vars = [
(g, v)
for (g, v) in self.gradients(self._optimizer, self._loss)
if g is not None
]
self._grads = [g for (g, _) in self._grads_and_vars]
if self.model:
self._variables = ray.experimental.tf_utils.TensorFlowVariables(
[], self.get_session(), self.variables())
# Gather update ops for any batch norm layers.
if len(self.devices) <= 1:
if not self._update_ops:
self._update_ops = tf1.get_collection(
tf1.GraphKeys.UPDATE_OPS,
scope=tf1.get_variable_scope().name)
if self._update_ops:
logger.info("Update ops to run on apply gradient: {}".format(
self._update_ops))
with tf1.control_dependencies(self._update_ops):
self._apply_op = self.build_apply_op(
optimizer=self._optimizers
if self.config["_tf_policy_handles_more_than_one_loss"]
else self._optimizer,
grads_and_vars=self._grads_and_vars)
if log_once("loss_used"):
logger.debug("These tensors were used in the loss functions:"
f"\n{summarize(self._loss_input_dict)}\n")
self.get_session().run(tf1.global_variables_initializer())
# TensorFlowVariables holing a flat list of all our optimizers'
# variables.
self._optimizer_variables = \
ray.experimental.tf_utils.TensorFlowVariables(
[v for o in self._optimizers for v in o.variables()],
self.get_session())
@DeveloperAPI
def copy(self,
existing_inputs: List[Tuple[str, "tf1.placeholder"]]) -> \
"TFPolicy":
"""Creates a copy of self using existing input placeholders.
Optional: Only required to work with the multi-GPU optimizer.
Args:
existing_inputs (List[Tuple[str, tf1.placeholder]]): Dict mapping
names (str) to tf1.placeholders to re-use (share) with the
returned copy of self.
Returns:
TFPolicy: A copy of self.
"""
raise NotImplementedError
@DeveloperAPI
def extra_compute_action_feed_dict(self) -> Dict[TensorType, TensorType]:
"""Extra dict to pass to the compute actions session run.
Returns:
Dict[TensorType, TensorType]: A feed dict to be added to the
feed_dict passed to the compute_actions session.run() call.
"""
return {}
@DeveloperAPI
def extra_compute_action_fetches(self) -> Dict[str, TensorType]:
"""Extra values to fetch and return from compute_actions().
By default we return action probability/log-likelihood info
and action distribution inputs (if present).
Returns:
Dict[str, TensorType]: An extra fetch-dict to be passed to and
returned from the compute_actions() call.
"""
extra_fetches = {}
# Action-logp and action-prob.
if self._sampled_action_logp is not None:
extra_fetches[SampleBatch.ACTION_PROB] = self._sampled_action_prob
extra_fetches[SampleBatch.ACTION_LOGP] = self._sampled_action_logp
# Action-dist inputs.
if self._dist_inputs is not None:
extra_fetches[SampleBatch.ACTION_DIST_INPUTS] = self._dist_inputs
return extra_fetches
@DeveloperAPI
def extra_compute_grad_feed_dict(self) -> Dict[TensorType, TensorType]:
"""Extra dict to pass to the compute gradients session run.
Returns:
Dict[TensorType, TensorType]: Extra feed_dict to be passed to the
compute_gradients Session.run() call.
"""
return {} # e.g, kl_coeff
@DeveloperAPI
def extra_compute_grad_fetches(self) -> Dict[str, any]:
"""Extra values to fetch and return from compute_gradients().
Returns:
Dict[str, any]: Extra fetch dict to be added to the fetch dict
of the compute_gradients Session.run() call.
"""
return {LEARNER_STATS_KEY: {}} # e.g, stats, td error, etc.
@DeveloperAPI
def optimizer(self) -> "tf.keras.optimizers.Optimizer":
"""TF optimizer to use for policy optimization.
Returns:
tf.keras.optimizers.Optimizer: The local optimizer to use for this
Policy's Model.
"""
if hasattr(self, "config") and "lr" in self.config:
return tf1.train.AdamOptimizer(learning_rate=self.config["lr"])
else:
return tf1.train.AdamOptimizer()
@DeveloperAPI
def gradients(
self,
optimizer: Union[LocalOptimizer, List[LocalOptimizer]],
loss: Union[TensorType, List[TensorType]],
) -> Union[List[ModelGradients], List[List[ModelGradients]]]:
"""Override this for a custom gradient computation behavior.
Args:
optimizer (Union[LocalOptimizer, List[LocalOptimizer]]): A single
LocalOptimizer of a list thereof to use for gradient
calculations. If more than one optimizer given, the number of
optimizers must match the number of losses provided.
loss (Union[TensorType, List[TensorType]]): A single loss term
or a list thereof to use for gradient calculations.
If more than one loss given, the number of loss terms must
match the number of optimizers provided.
Returns:
Union[List[ModelGradients], List[List[ModelGradients]]]: List of
ModelGradients (grads and vars OR just grads) OR List of List
of ModelGradients in case we have more than one
optimizer/loss.
"""
optimizers = force_list(optimizer)
losses = force_list(loss)
# We have more than one optimizers and loss terms.
if self.config["_tf_policy_handles_more_than_one_loss"]:
grads = []
for optim, loss_ in zip(optimizers, losses):
grads.append(optim.compute_gradients(loss_))
# We have only one optimizer and one loss term.
else:
return optimizers[0].compute_gradients(losses[0])
@DeveloperAPI
def build_apply_op(
self,
optimizer: Union[LocalOptimizer, List[LocalOptimizer]],
grads_and_vars: Union[ModelGradients, List[ModelGradients]],
) -> "tf.Operation":
"""Override this for a custom gradient apply computation behavior.
Args:
optimizer (Union[LocalOptimizer, List[LocalOptimizer]]): The local
tf optimizer to use for applying the grads and vars.
grads_and_vars (Union[ModelGradients, List[ModelGradients]]): List
of tuples with grad values and the grad-value's corresponding
tf.variable in it.
Returns:
tf.Operation: The tf op that applies all computed gradients
(`grads_and_vars`) to the model(s) via the given optimizer(s).
"""
optimizers = force_list(optimizer)
# We have more than one optimizers and loss terms.
if self.config["_tf_policy_handles_more_than_one_loss"]:
ops = []
for i, optim in enumerate(optimizers):
# Specify global_step (e.g. for TD3 which needs to count the
# num updates that have happened).
ops.append(
optim.apply_gradients(
grads_and_vars[i],
global_step=tf1.train.get_or_create_global_step()))
return tf.group(ops)
# We have only one optimizer and one loss term.
else:
return optimizers[0].apply_gradients(
grads_and_vars,
global_step=tf1.train.get_or_create_global_step())
def _get_is_training_placeholder(self):
"""Get the placeholder for _is_training, i.e., for batch norm layers.
This can be called safely before __init__ has run.
"""
if not hasattr(self, "_is_training"):
self._is_training = tf1.placeholder_with_default(
False, (), name="is_training")
return self._is_training
def _debug_vars(self):
if log_once("grad_vars"):
if self.config["_tf_policy_handles_more_than_one_loss"]:
for group in self._grads_and_vars:
for _, v in group:
logger.info("Optimizing variable {}".format(v))
else:
for _, v in self._grads_and_vars:
logger.info("Optimizing variable {}".format(v))
def _extra_input_signature_def(self):
"""Extra input signatures to add when exporting tf model.
Inferred from extra_compute_action_feed_dict()
"""
feed_dict = self.extra_compute_action_feed_dict()
return {
k.name: tf1.saved_model.utils.build_tensor_info(k)
for k in feed_dict.keys()
}
def _extra_output_signature_def(self):
"""Extra output signatures to add when exporting tf model.
Inferred from extra_compute_action_fetches()
"""
fetches = self.extra_compute_action_fetches()
return {
k: tf1.saved_model.utils.build_tensor_info(fetches[k])
for k in fetches.keys()
}
def _build_signature_def(self):
"""Build signature def map for tensorflow SavedModelBuilder.
"""
# build input signatures
input_signature = self._extra_input_signature_def()
input_signature["observations"] = \
tf1.saved_model.utils.build_tensor_info(self._obs_input)
if self._seq_lens is not None:
input_signature[SampleBatch.SEQ_LENS] = \
tf1.saved_model.utils.build_tensor_info(self._seq_lens)
if self._prev_action_input is not None:
input_signature["prev_action"] = \
tf1.saved_model.utils.build_tensor_info(
self._prev_action_input)
if self._prev_reward_input is not None:
input_signature["prev_reward"] = \
tf1.saved_model.utils.build_tensor_info(
self._prev_reward_input)
input_signature["is_training"] = \
tf1.saved_model.utils.build_tensor_info(self._is_training)
if self._timestep is not None:
input_signature["timestep"] = \
tf1.saved_model.utils.build_tensor_info(self._timestep)
for state_input in self._state_inputs:
input_signature[state_input.name] = \
tf1.saved_model.utils.build_tensor_info(state_input)
# build output signatures
output_signature = self._extra_output_signature_def()
for i, a in enumerate(tf.nest.flatten(self._sampled_action)):
output_signature["actions_{}".format(i)] = \
tf1.saved_model.utils.build_tensor_info(a)
for state_output in self._state_outputs:
output_signature[state_output.name] = \
tf1.saved_model.utils.build_tensor_info(state_output)
signature_def = (
tf1.saved_model.signature_def_utils.build_signature_def(
input_signature, output_signature,
tf1.saved_model.signature_constants.PREDICT_METHOD_NAME))
signature_def_key = (tf1.saved_model.signature_constants.
DEFAULT_SERVING_SIGNATURE_DEF_KEY)
signature_def_map = {signature_def_key: signature_def}
return signature_def_map
def _build_compute_actions(self,
builder,
*,
input_dict=None,
obs_batch=None,
state_batches=None,
prev_action_batch=None,
prev_reward_batch=None,
episodes=None,
explore=None,
timestep=None):
explore = explore if explore is not None else self.config["explore"]
timestep = timestep if timestep is not None else self.global_timestep
# Call the exploration before_compute_actions hook.
self.exploration.before_compute_actions(
timestep=timestep, explore=explore, tf_sess=self.get_session())
builder.add_feed_dict(self.extra_compute_action_feed_dict())
# `input_dict` given: Simply build what's in that dict.
if input_dict is not None:
if hasattr(self, "_input_dict"):
for key, value in input_dict.items():
if key in self._input_dict:
# Handle complex/nested spaces as well.
tree.map_structure(
lambda k, v: builder.add_feed_dict({k: v}),
self._input_dict[key], value,
)
# For policies that inherit directly from TFPolicy.
else:
builder.add_feed_dict({
self._obs_input: input_dict[SampleBatch.OBS]
})
if SampleBatch.PREV_ACTIONS in input_dict:
builder.add_feed_dict({
self._prev_action_input: input_dict[
SampleBatch.PREV_ACTIONS]
})
if SampleBatch.PREV_REWARDS in input_dict:
builder.add_feed_dict({
self._prev_reward_input: input_dict[
SampleBatch.PREV_REWARDS]
})
state_batches = []
i = 0
while "state_in_{}".format(i) in input_dict:
state_batches.append(input_dict["state_in_{}".format(i)])
i += 1
builder.add_feed_dict(
dict(zip(self._state_inputs, state_batches)))
if "state_in_0" in input_dict:
builder.add_feed_dict({
self._seq_lens: np.ones(len(input_dict["state_in_0"]))
})
# Hardcoded old way: Build fixed fields, if provided.
# TODO: (sven) This can be deprecated after trajectory view API flag is
# removed and always True.
else:
if log_once("_build_compute_actions_input_dict"):
deprecation_warning(
old="_build_compute_actions(.., obs_batch=.., ..)",
new="_build_compute_actions(.., input_dict=..)",
error=False,
)
state_batches = state_batches or []
if len(self._state_inputs) != len(state_batches):
raise ValueError(
"Must pass in RNN state batches for placeholders {}, "
"got {}".format(self._state_inputs, state_batches))
tree.map_structure(
lambda k, v: builder.add_feed_dict({k: v}),
self._obs_input, obs_batch,
)
if state_batches:
builder.add_feed_dict({
self._seq_lens: np.ones(len(obs_batch))
})
if self._prev_action_input is not None and \
prev_action_batch is not None:
builder.add_feed_dict({
self._prev_action_input: prev_action_batch
})
if self._prev_reward_input is not None and \
prev_reward_batch is not None:
builder.add_feed_dict({
self._prev_reward_input: prev_reward_batch
})
builder.add_feed_dict(dict(zip(self._state_inputs, state_batches)))
builder.add_feed_dict({self._is_training: False})
builder.add_feed_dict({self._is_exploring: explore})
if timestep is not None:
builder.add_feed_dict({self._timestep: timestep})
# Determine, what exactly to fetch from the graph.
to_fetch = [self._sampled_action] + self._state_outputs + \
[self.extra_compute_action_fetches()]
# Perform the session call.
fetches = builder.add_fetches(to_fetch)
return fetches[0], fetches[1:-1], fetches[-1]
def _build_compute_gradients(self, builder, postprocessed_batch):
self._debug_vars()
builder.add_feed_dict(self.extra_compute_grad_feed_dict())
builder.add_feed_dict(
self._get_loss_inputs_dict(postprocessed_batch, shuffle=False))
fetches = builder.add_fetches(
[self._grads, self._get_grad_and_stats_fetches()])
return fetches[0], fetches[1]
def _build_apply_gradients(self, builder, gradients):
if len(gradients) != len(self._grads):
raise ValueError(
"Unexpected number of gradients to apply, got {} for {}".
format(gradients, self._grads))
builder.add_feed_dict({self._is_training: True})
builder.add_feed_dict(dict(zip(self._grads, gradients)))
fetches = builder.add_fetches([self._apply_op])
return fetches[0]
def _build_learn_on_batch(self, builder, postprocessed_batch):
self._debug_vars()
builder.add_feed_dict(self.extra_compute_grad_feed_dict())
builder.add_feed_dict(
self._get_loss_inputs_dict(postprocessed_batch, shuffle=False))
fetches = builder.add_fetches([
self._apply_op,
self._get_grad_and_stats_fetches(),
])
return fetches[1]
def _get_grad_and_stats_fetches(self):
fetches = self.extra_compute_grad_fetches()
if LEARNER_STATS_KEY not in fetches:
raise ValueError(
"Grad fetches should contain 'stats': {...} entry")
if self._stats_fetches:
fetches[LEARNER_STATS_KEY] = dict(self._stats_fetches,
**fetches[LEARNER_STATS_KEY])
return fetches
def _get_loss_inputs_dict(self, train_batch: SampleBatch, shuffle: bool):
"""Return a feed dict from a batch.
Args:
train_batch (SampleBatch): batch of data to derive inputs from.
shuffle (bool): whether to shuffle batch sequences. Shuffle may
be done in-place. This only makes sense if you're further
applying minibatch SGD after getting the outputs.
Returns:
Feed dict of data.
"""
# Get batch ready for RNNs, if applicable.
if not isinstance(train_batch,
SampleBatch) or not train_batch.zero_padded:
pad_batch_to_sequences_of_same_size(
train_batch,
max_seq_len=self._max_seq_len,
shuffle=shuffle,
batch_divisibility_req=self._batch_divisibility_req,
feature_keys=list(self._loss_input_dict_no_rnn.keys()),
view_requirements=self.view_requirements,
)
# Mark the batch as "is_training" so the Model can use this
# information.
train_batch.set_training(True)
# Build the feed dict from the batch.
feed_dict = {}
for key, placeholders in self._loss_input_dict.items():
tree.map_structure(
lambda ph, v: feed_dict.__setitem__(ph, v),
placeholders,
train_batch[key],
)
state_keys = [
"state_in_{}".format(i) for i in range(len(self._state_inputs))
]
for key in state_keys:
feed_dict[self._loss_input_dict[key]] = train_batch[key]
if state_keys:
feed_dict[self._seq_lens] = train_batch[SampleBatch.SEQ_LENS]
return feed_dict
@DeveloperAPI
class LearningRateSchedule:
"""Mixin for TFPolicy that adds a learning rate schedule."""
@DeveloperAPI
def __init__(self, lr, lr_schedule):
self._lr_schedule = None
if lr_schedule is None:
self.cur_lr = tf1.get_variable(
"lr", initializer=lr, trainable=False)
else:
self._lr_schedule = PiecewiseSchedule(
lr_schedule, outside_value=lr_schedule[-1][-1], framework=None)
self.cur_lr = tf1.get_variable(
"lr", initializer=self._lr_schedule.value(0), trainable=False)
if self.framework == "tf":
self._lr_placeholder = tf1.placeholder(
dtype=tf.float32, name="lr")
self._lr_update = self.cur_lr.assign(
self._lr_placeholder, read_value=False)
@override(Policy)
def on_global_var_update(self, global_vars):
super(LearningRateSchedule, self).on_global_var_update(global_vars)
if self._lr_schedule is not None:
new_val = self._lr_schedule.value(global_vars["timestep"])
if self.framework == "tf":
self.get_session().run(
self._lr_update, feed_dict={self._lr_placeholder: new_val})
else:
self.cur_lr.assign(new_val, read_value=False)
# This property (self._optimizer) is (still) accessible for
# both TFPolicy and any TFPolicy_eager.
self._optimizer.learning_rate.assign(self.cur_lr)
@override(TFPolicy)
def optimizer(self):
return tf1.train.AdamOptimizer(learning_rate=self.cur_lr)
@DeveloperAPI
class EntropyCoeffSchedule:
"""Mixin for TFPolicy that adds entropy coeff decay."""
@DeveloperAPI
def __init__(self, entropy_coeff, entropy_coeff_schedule):
self._entropy_coeff_schedule = None
if entropy_coeff_schedule is None:
self.entropy_coeff = get_variable(
entropy_coeff,
framework="tf",
tf_name="entropy_coeff",
trainable=False)
else:
# Allows for custom schedule similar to lr_schedule format
if isinstance(entropy_coeff_schedule, list):
self._entropy_coeff_schedule = PiecewiseSchedule(
entropy_coeff_schedule,
outside_value=entropy_coeff_schedule[-1][-1],
framework=None)
else:
# Implements previous version but enforces outside_value
self._entropy_coeff_schedule = PiecewiseSchedule(
[[0, entropy_coeff], [entropy_coeff_schedule, 0.0]],
outside_value=0.0,
framework=None)
self.entropy_coeff = get_variable(
self._entropy_coeff_schedule.value(0),
framework="tf",
tf_name="entropy_coeff",
trainable=False)
if self.framework == "tf":
self._entropy_coeff_placeholder = tf1.placeholder(
dtype=tf.float32, name="entropy_coeff")
self._entropy_coeff_update = self.entropy_coeff.assign(
self._entropy_coeff_placeholder, read_value=False)
@override(Policy)
def on_global_var_update(self, global_vars):
super(EntropyCoeffSchedule, self).on_global_var_update(global_vars)
if self._entropy_coeff_schedule is not None:
new_val = self._entropy_coeff_schedule.value(
global_vars["timestep"])
if self.framework == "tf":
self.get_session().run(
self._entropy_coeff_update,
feed_dict={self._entropy_coeff_placeholder: new_val})
else:
self.entropy_coeff.assign(new_val, read_value=False)