ray/doc/source/ray-air/examples/pytorch_tabular_starter.py

164 lines
4.7 KiB
Python

# flake8: noqa
# isort: skip_file
# __air_generic_preprocess_start__
import ray
from ray.data.preprocessors import StandardScaler
# Load data.
dataset = ray.data.read_csv("s3://anonymous@air-example-data/breast_cancer.csv")
# Split data into train and validation.
train_dataset, valid_dataset = dataset.train_test_split(test_size=0.3)
# Create a test dataset by dropping the target column.
test_dataset = valid_dataset.map_batches(
lambda df: df.drop("target", axis=1), batch_format="pandas"
)
# Create a preprocessor to scale some columns
columns_to_scale = ["mean radius", "mean texture"]
preprocessor = StandardScaler(columns=columns_to_scale)
# __air_generic_preprocess_end__
# __air_pytorch_preprocess_start__
import numpy as np
import pandas as pd
from ray.data.preprocessors import Concatenator, Chain
# Chain the preprocessors together.
preprocessor = Chain(
preprocessor,
Concatenator(exclude=["target"], dtype=np.float32),
)
# __air_pytorch_preprocess_end__
# __air_pytorch_train_start__
import torch
import torch.nn as nn
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
from ray import train
from ray.air import session
from ray.air.config import ScalingConfig
from ray.train.torch import TorchCheckpoint, TorchTrainer
def create_model(input_features):
return nn.Sequential(
nn.Linear(in_features=input_features, out_features=16),
nn.ReLU(),
nn.Linear(16, 16),
nn.ReLU(),
nn.Linear(16, 1),
nn.Sigmoid(),
)
def train_loop_per_worker(config):
batch_size = config["batch_size"]
lr = config["lr"]
epochs = config["num_epochs"]
num_features = config["num_features"]
# Get the Ray Dataset shard for this data parallel worker,
# and convert it to a PyTorch Dataset.
train_data = train.get_dataset_shard("train")
def to_tensor_iterator(dataset, batch_size):
data_iterator = dataset.iter_batches(
batch_format="numpy", batch_size=batch_size
)
for d in data_iterator:
# "concat_out" is the output column of the Concatenator.
yield (
torch.Tensor(d["concat_out"]).float(),
torch.Tensor(d["target"]).float(),
)
# Create model.
model = create_model(num_features)
model = train.torch.prepare_model(model)
loss_fn = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
for cur_epoch in range(epochs):
for inputs, labels in to_tensor_iterator(train_data, batch_size):
optimizer.zero_grad()
predictions = model(inputs)
train_loss = loss_fn(predictions, labels.unsqueeze(1))
train_loss.backward()
optimizer.step()
loss = train_loss.item()
session.report({"loss": loss}, checkpoint=TorchCheckpoint.from_model(model))
num_features = len(train_dataset.schema().names) - 1
trainer = TorchTrainer(
train_loop_per_worker=train_loop_per_worker,
train_loop_config={
"batch_size": 128,
"num_epochs": 20,
"num_features": num_features,
"lr": 0.001,
},
scaling_config=ScalingConfig(
num_workers=3, # Number of workers to use for data parallelism.
use_gpu=False,
trainer_resources={"CPU": 0}, # so that the example works on Colab.
),
datasets={"train": train_dataset},
preprocessor=preprocessor,
)
# Execute training.
result = trainer.fit()
print(f"Last result: {result.metrics}")
# Last result: {'loss': 0.6559339960416158, ...}
# __air_pytorch_train_end__
# __air_pytorch_tuner_start__
from ray import tune
param_space = {"train_loop_config": {"lr": tune.loguniform(0.0001, 0.01)}}
metric = "loss"
# __air_pytorch_tuner_end__
# __air_tune_generic_start__
from ray.tune.tuner import Tuner, TuneConfig
from ray.air.config import RunConfig
tuner = Tuner(
trainer,
param_space=param_space,
tune_config=TuneConfig(num_samples=5, metric=metric, mode="min"),
)
# Execute tuning.
result_grid = tuner.fit()
# Fetch the best result.
best_result = result_grid.get_best_result()
print("Best Result:", best_result)
# Best Result: Result(metrics={'loss': 0.278409322102863, ...})
# __air_tune_generic_end__
# __air_pytorch_batchpred_start__
from ray.train.batch_predictor import BatchPredictor
from ray.train.torch import TorchPredictor
# You can also create a checkpoint from a trained model using
# `TorchCheckpoint.from_model`.
checkpoint = best_result.checkpoint
batch_predictor = BatchPredictor.from_checkpoint(
checkpoint, TorchPredictor, model=create_model(num_features)
)
predicted_probabilities = batch_predictor.predict(test_dataset)
predicted_probabilities.show()
# {'predictions': array([1.], dtype=float32)}
# {'predictions': array([0.], dtype=float32)}
# __air_pytorch_batchpred_end__