ray/rllib/examples/attention_net.py

128 lines
4.3 KiB
Python

import argparse
import os
import ray
from ray import tune
from ray.rllib.examples.env.look_and_push import LookAndPush, OneHot
from ray.rllib.examples.env.repeat_after_me_env import RepeatAfterMeEnv
from ray.rllib.examples.env.repeat_initial_obs_env import RepeatInitialObsEnv
from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check_learning_achieved
from ray.tune import registry
tf1, tf, tfv = try_import_tf()
parser = argparse.ArgumentParser()
parser.add_argument(
"--run",
type=str,
default="PPO",
help="The RLlib-registered algorithm to use.")
parser.add_argument("--env", type=str, default="RepeatAfterMeEnv")
parser.add_argument("--num-cpus", type=int, default=3)
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.")
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.")
parser.add_argument(
"--stop-iters",
type=int,
default=200,
help="Number of iterations to train.")
parser.add_argument(
"--stop-timesteps",
type=int,
default=500000,
help="Number of timesteps to train.")
parser.add_argument(
"--stop-reward",
type=float,
default=80.0,
help="Reward at which we stop training.")
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus or None)
registry.register_env("RepeatAfterMeEnv", lambda c: RepeatAfterMeEnv(c))
registry.register_env("RepeatInitialObsEnv",
lambda _: RepeatInitialObsEnv())
registry.register_env("LookAndPush", lambda _: OneHot(LookAndPush()))
registry.register_env("StatelessCartPole", lambda _: StatelessCartPole())
config = {
"env": args.env,
# This env_config is only used for the RepeatAfterMeEnv env.
"env_config": {
"repeat_delay": 2,
},
"gamma": 0.99,
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", 0)),
"num_envs_per_worker": 20,
"entropy_coeff": 0.001,
"num_sgd_iter": 10,
"vf_loss_coeff": 1e-5,
"model": {
# Attention net wrapping (for tf) can already use the native keras
# model versions. For torch, this will have no effect.
"_use_default_native_models": True,
"use_attention": True,
"max_seq_len": 10,
"attention_num_transformer_units": 1,
"attention_dim": 32,
"attention_memory_inference": 10,
"attention_memory_training": 10,
"attention_num_heads": 1,
"attention_head_dim": 32,
"attention_position_wise_mlp_dim": 32,
},
"framework": args.framework,
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
# To run the Trainer without tune.run, using the attention net and
# manual state-in handling, do the following:
# Example (use `config` from the above code):
# >> import numpy as np
# >> from ray.rllib.agents.ppo import PPOTrainer
# >>
# >> trainer = PPOTrainer(config)
# >> num_transformers = config["model"]["attention_num_transformer_units"]
# >> env = RepeatAfterMeEnv({})
# >> obs = env.reset()
# >> init_state = state = [
# .. np.zeros([100, 32], np.float32) for _ in range(num_transformers)
# .. ]
# >> while True:
# >> a, state_out, _ = trainer.compute_single_action(obs, state)
# >> obs, reward, done, _ = env.step(a)
# >> if done:
# >> obs = env.reset()
# >> state = init_state
# >> else:
# >> state = [
# .. np.concatenate([state[i], [state_out[i]]], axis=0)[1:]
# .. for i in range(num_transformers)
# .. ]
# We use tune here, which handles env and trainer creation for us.
results = tune.run(args.run, config=config, stop=stop, verbose=2)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()