mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
150 lines
4.7 KiB
Python
150 lines
4.7 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import os
|
|
import numpy as np
|
|
import torchvision
|
|
from torch.utils.data import DataLoader
|
|
|
|
import torchvision.transforms as transforms
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.tune.schedulers import create_scheduler
|
|
from ray.tune.integration.horovod import (DistributedTrainableCreator,
|
|
distributed_checkpoint_dir)
|
|
from ray.util.sgd.torch.resnet import ResNet18
|
|
|
|
from ray.tune.utils.release_test_util import ProgressCallback
|
|
|
|
CIFAR10_STATS = {
|
|
"mean": (0.4914, 0.4822, 0.4465),
|
|
"std": (0.2023, 0.1994, 0.2010),
|
|
}
|
|
|
|
|
|
def train(config, checkpoint_dir=None):
|
|
import horovod.torch as hvd
|
|
hvd.init()
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
net = ResNet18(None).to(device)
|
|
optimizer = torch.optim.SGD(
|
|
net.parameters(),
|
|
lr=config["lr"],
|
|
)
|
|
epoch = 0
|
|
|
|
if checkpoint_dir:
|
|
with open(os.path.join(checkpoint_dir, "checkpoint")) as f:
|
|
model_state, optimizer_state, epoch = torch.load(f)
|
|
|
|
net.load_state_dict(model_state)
|
|
optimizer.load_state_dict(optimizer_state)
|
|
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = hvd.DistributedOptimizer(optimizer)
|
|
np.random.seed(1 + hvd.rank())
|
|
torch.manual_seed(1234)
|
|
# To ensure consistent initialization across slots,
|
|
hvd.broadcast_parameters(net.state_dict(), root_rank=0)
|
|
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
|
|
|
|
trainset = ray.get(config["data"])
|
|
trainloader = DataLoader(
|
|
trainset,
|
|
batch_size=int(config["batch_size"]),
|
|
shuffle=True,
|
|
num_workers=4)
|
|
|
|
for epoch in range(epoch, 40): # loop over the dataset multiple times
|
|
running_loss = 0.0
|
|
epoch_steps = 0
|
|
for i, data in enumerate(trainloader):
|
|
# get the inputs; data is a list of [inputs, labels]
|
|
inputs, labels = data
|
|
inputs, labels = inputs.to(device), labels.to(device)
|
|
|
|
# zero the parameter gradients
|
|
optimizer.zero_grad()
|
|
|
|
# forward + backward + optimize
|
|
outputs = net(inputs)
|
|
loss = criterion(outputs, labels)
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
# print statistics
|
|
running_loss += loss.item()
|
|
epoch_steps += 1
|
|
tune.report(loss=running_loss / epoch_steps)
|
|
if i % 2000 == 1999: # print every 2000 mini-batches
|
|
print("[%d, %5d] loss: %.3f" % (epoch + 1, i + 1,
|
|
running_loss / epoch_steps))
|
|
|
|
with distributed_checkpoint_dir(step=epoch) as checkpoint_dir:
|
|
print("this checkpoint dir: ", checkpoint_dir)
|
|
path = os.path.join(checkpoint_dir, "checkpoint")
|
|
torch.save((net.state_dict(), optimizer.state_dict(), epoch), path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--smoke-test",
|
|
action="store_true",
|
|
help=("Finish quickly for testing."))
|
|
args = parser.parse_args()
|
|
|
|
if args.smoke_test:
|
|
ray.init()
|
|
else:
|
|
ray.init(address="auto") # assumes ray is started with ray up
|
|
|
|
horovod_trainable = DistributedTrainableCreator(
|
|
train,
|
|
use_gpu=False if args.smoke_test else True,
|
|
num_hosts=1 if args.smoke_test else 2,
|
|
num_slots=2 if args.smoke_test else 2,
|
|
replicate_pem=False,
|
|
timeout_s=300)
|
|
|
|
transform_train = transforms.Compose([
|
|
transforms.RandomCrop(32, padding=4),
|
|
transforms.RandomHorizontalFlip(),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(CIFAR10_STATS["mean"], CIFAR10_STATS["std"]),
|
|
]) # meanstd transformation
|
|
|
|
dataset = torchvision.datasets.CIFAR10(
|
|
root="/tmp/data_cifar",
|
|
train=True,
|
|
download=True,
|
|
transform=transform_train)
|
|
|
|
# ensure that checkpointing works.
|
|
pbt = create_scheduler(
|
|
"pbt",
|
|
perturbation_interval=2,
|
|
hyperparam_mutations={
|
|
"lr": tune.uniform(0.001, 0.1),
|
|
})
|
|
|
|
analysis = tune.run(
|
|
horovod_trainable,
|
|
metric="loss",
|
|
mode="min",
|
|
keep_checkpoints_num=1,
|
|
scheduler=pbt,
|
|
config={
|
|
"lr": 0.1 if args.smoke_test else
|
|
tune.grid_search([0.1 * i for i in range(1, 10)]),
|
|
"batch_size": 64,
|
|
"data": ray.put(dataset)
|
|
},
|
|
num_samples=1,
|
|
stop={"training_iteration": 1} if args.smoke_test else None,
|
|
callbacks=[ProgressCallback()], # FailureInjectorCallback()
|
|
fail_fast=True,
|
|
)
|
|
print("Best hyperparameters found were: ", analysis.best_config)
|