ray/rllib/agents/cql/cql.py

186 lines
7.7 KiB
Python

import logging
import numpy as np
from typing import Type
from ray.rllib.agents.cql.cql_tf_policy import CQLTFPolicy
from ray.rllib.agents.cql.cql_torch_policy import CQLTorchPolicy
from ray.rllib.agents.sac.sac import SACTrainer, \
DEFAULT_CONFIG as SAC_CONFIG
from ray.rllib.execution.metric_ops import StandardMetricsReporting
from ray.rllib.execution.replay_ops import Replay
from ray.rllib.execution.train_ops import MultiGPUTrainOneStep, TrainOneStep, \
UpdateTargetNetwork
from ray.rllib.offline.shuffled_input import ShuffledInput
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils import merge_dicts
from ray.rllib.utils.annotations import override
from ray.rllib.utils.deprecation import DEPRECATED_VALUE
from ray.rllib.utils.framework import try_import_tf, try_import_tfp
from ray.rllib.utils.metrics.learner_info import LEARNER_STATS_KEY
from ray.rllib.utils.typing import TrainerConfigDict
tf1, tf, tfv = try_import_tf()
tfp = try_import_tfp()
logger = logging.getLogger(__name__)
# yapf: disable
# __sphinx_doc_begin__
CQL_DEFAULT_CONFIG = merge_dicts(
SAC_CONFIG, {
# You should override this to point to an offline dataset.
"input": "sampler",
# Switch off off-policy evaluation.
"input_evaluation": [],
# Number of iterations with Behavior Cloning Pretraining.
"bc_iters": 20000,
# CQL loss temperature.
"temperature": 1.0,
# Number of actions to sample for CQL loss.
"num_actions": 10,
# Whether to use the Lagrangian for Alpha Prime (in CQL loss).
"lagrangian": False,
# Lagrangian threshold.
"lagrangian_thresh": 5.0,
# Min Q weight multiplier.
"min_q_weight": 5.0,
# Replay buffer should be larger or equal the size of the offline
# dataset.
"buffer_size": DEPRECATED_VALUE,
"replay_buffer_config": {
"type": "MultiAgentReplayBuffer",
"capacity": int(1e6),
},
})
# __sphinx_doc_end__
# yapf: enable
class CQLTrainer(SACTrainer):
"""CQL (derived from SAC)."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Add the entire dataset to Replay Buffer (global variable)
reader = self.workers.local_worker().input_reader
replay_buffer = self.local_replay_buffer
# For d4rl, add the D4RLReaders' dataset to the buffer.
if isinstance(self.config["input"], str) and \
"d4rl" in self.config["input"]:
dataset = reader.dataset
replay_buffer.add_batch(dataset)
# For a list of files, add each file's entire content to the buffer.
elif isinstance(reader, ShuffledInput):
num_batches = 0
total_timesteps = 0
for batch in reader.child.read_all_files():
num_batches += 1
total_timesteps += len(batch)
# Add NEXT_OBS if not available. This is slightly hacked
# as for the very last time step, we will use next-obs=zeros
# and therefore force-set DONE=True to avoid this missing
# next-obs to cause learning problems.
if SampleBatch.NEXT_OBS not in batch:
obs = batch[SampleBatch.OBS]
batch[SampleBatch.NEXT_OBS] = \
np.concatenate([obs[1:], np.zeros_like(obs[0:1])])
batch[SampleBatch.DONES][-1] = True
replay_buffer.add_batch(batch)
print(
f"Loaded {num_batches} batches ({total_timesteps} ts) into the"
f" replay buffer, which has capacity {replay_buffer.capacity}."
)
else:
raise ValueError(
"Unknown offline input! config['input'] must either be list of"
" offline files (json) or a D4RL-specific InputReader "
"specifier (e.g. 'd4rl.hopper-medium-v0').")
@classmethod
@override(SACTrainer)
def get_default_config(cls) -> TrainerConfigDict:
return CQL_DEFAULT_CONFIG
@override(SACTrainer)
def validate_config(self, config: TrainerConfigDict) -> None:
# Call super's validation method.
super().validate_config(config)
if config["num_gpus"] > 1:
raise ValueError("`num_gpus` > 1 not yet supported for CQL!")
# CQL-torch performs the optimizer steps inside the loss function.
# Using the multi-GPU optimizer will therefore not work (see multi-GPU
# check above) and we must use the simple optimizer for now.
if config["simple_optimizer"] is not True and \
config["framework"] == "torch":
config["simple_optimizer"] = True
if config["framework"] in ["tf", "tf2", "tfe"] and tfp is None:
logger.warning(
"You need `tensorflow_probability` in order to run CQL! "
"Install it via `pip install tensorflow_probability`. Your "
f"tf.__version__={tf.__version__ if tf else None}."
"Trying to import tfp results in the following error:")
try_import_tfp(error=True)
@override(SACTrainer)
def get_default_policy_class(self,
config: TrainerConfigDict) -> Type[Policy]:
if config["framework"] == "torch":
return CQLTorchPolicy
else:
return CQLTFPolicy
@staticmethod
@override(SACTrainer)
def execution_plan(workers, config, **kwargs):
assert "local_replay_buffer" in kwargs, (
"CQL execution plan requires a local replay buffer.")
local_replay_buffer = kwargs["local_replay_buffer"]
def update_prio(item):
samples, info_dict = item
if config.get("prioritized_replay"):
prio_dict = {}
for policy_id, info in info_dict.items():
# TODO(sven): This is currently structured differently for
# torch/tf. Clean up these results/info dicts across
# policies (note: fixing this in torch_policy.py will
# break e.g. DDPPO!).
td_error = info.get(
"td_error", info[LEARNER_STATS_KEY].get("td_error"))
samples.policy_batches[policy_id].set_get_interceptor(None)
prio_dict[policy_id] = (samples.policy_batches[policy_id]
.get("batch_indexes"), td_error)
local_replay_buffer.update_priorities(prio_dict)
return info_dict
# (2) Read and train on experiences from the replay buffer. Every batch
# returned from the LocalReplay() iterator is passed to TrainOneStep to
# take a SGD step, and then we decide whether to update the target
# network.
post_fn = config.get("before_learn_on_batch") or (lambda b, *a: b)
if config["simple_optimizer"]:
train_step_op = TrainOneStep(workers)
else:
train_step_op = MultiGPUTrainOneStep(
workers=workers,
sgd_minibatch_size=config["train_batch_size"],
num_sgd_iter=1,
num_gpus=config["num_gpus"],
_fake_gpus=config["_fake_gpus"])
train_op = Replay(local_buffer=local_replay_buffer) \
.for_each(lambda x: post_fn(x, workers, config)) \
.for_each(train_step_op) \
.for_each(update_prio) \
.for_each(UpdateTargetNetwork(
workers, config["target_network_update_freq"]))
return StandardMetricsReporting(
train_op, workers, config, by_steps_trained=True)