mirror of
https://github.com/vale981/ray
synced 2025-03-07 02:51:39 -05:00

* Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 * Reformatting * Fixing tests * Move atari-py install conditional to req.txt * migrate to new ale install method * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 Move atari-py install conditional to req.txt migrate to new ale install method Make parametric_actions_cartpole return float32 actions/obs Adding type conversions if obs/actions don't match space Add utils to make elements match gym space dtypes Co-authored-by: Jun Gong <jungong@anyscale.com> Co-authored-by: sven1977 <svenmika1977@gmail.com>
127 lines
4.6 KiB
Python
127 lines
4.6 KiB
Python
import numpy as np
|
|
import unittest
|
|
|
|
import ray
|
|
import ray.rllib.agents.dqn as dqn
|
|
from ray.rllib.utils.test_utils import check, check_compute_single_action, \
|
|
check_train_results, framework_iterator
|
|
|
|
|
|
class TestDQN(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls) -> None:
|
|
ray.init()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls) -> None:
|
|
ray.shutdown()
|
|
|
|
def test_dqn_compilation(self):
|
|
"""Test whether a DQNTrainer can be built on all frameworks."""
|
|
config = dqn.DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 2
|
|
|
|
num_iterations = 1
|
|
|
|
for _ in framework_iterator(config, with_eager_tracing=True):
|
|
# Double-dueling DQN.
|
|
print("Double-dueling")
|
|
plain_config = config.copy()
|
|
trainer = dqn.DQNTrainer(config=plain_config, env="CartPole-v0")
|
|
for i in range(num_iterations):
|
|
results = trainer.train()
|
|
check_train_results(results)
|
|
print(results)
|
|
|
|
check_compute_single_action(trainer)
|
|
trainer.stop()
|
|
|
|
# Rainbow.
|
|
print("Rainbow")
|
|
rainbow_config = config.copy()
|
|
rainbow_config["num_atoms"] = 10
|
|
rainbow_config["noisy"] = True
|
|
rainbow_config["double_q"] = True
|
|
rainbow_config["dueling"] = True
|
|
rainbow_config["n_step"] = 5
|
|
trainer = dqn.DQNTrainer(config=rainbow_config, env="CartPole-v0")
|
|
for i in range(num_iterations):
|
|
results = trainer.train()
|
|
check_train_results(results)
|
|
print(results)
|
|
|
|
check_compute_single_action(trainer)
|
|
|
|
trainer.stop()
|
|
|
|
def test_dqn_exploration_and_soft_q_config(self):
|
|
"""Tests, whether a DQN Agent outputs exploration/softmaxed actions."""
|
|
config = dqn.DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 0 # Run locally.
|
|
config["env_config"] = {"is_slippery": False, "map_name": "4x4"}
|
|
obs = np.array(0)
|
|
|
|
# Test against all frameworks.
|
|
for _ in framework_iterator(config):
|
|
# Default EpsilonGreedy setup.
|
|
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v1")
|
|
# Setting explore=False should always return the same action.
|
|
a_ = trainer.compute_single_action(obs, explore=False)
|
|
for _ in range(50):
|
|
a = trainer.compute_single_action(obs, explore=False)
|
|
check(a, a_)
|
|
# explore=None (default: explore) should return different actions.
|
|
actions = []
|
|
for _ in range(50):
|
|
actions.append(trainer.compute_single_action(obs))
|
|
check(np.std(actions), 0.0, false=True)
|
|
trainer.stop()
|
|
|
|
# Low softmax temperature. Behaves like argmax
|
|
# (but no epsilon exploration).
|
|
config["exploration_config"] = {
|
|
"type": "SoftQ",
|
|
"temperature": 0.000001
|
|
}
|
|
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v1")
|
|
# Due to the low temp, always expect the same action.
|
|
actions = [trainer.compute_single_action(obs)]
|
|
for _ in range(50):
|
|
actions.append(trainer.compute_single_action(obs))
|
|
check(np.std(actions), 0.0, decimals=3)
|
|
trainer.stop()
|
|
|
|
# Higher softmax temperature.
|
|
config["exploration_config"]["temperature"] = 1.0
|
|
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v1")
|
|
|
|
# Even with the higher temperature, if we set explore=False, we
|
|
# should expect the same actions always.
|
|
a_ = trainer.compute_single_action(obs, explore=False)
|
|
for _ in range(50):
|
|
a = trainer.compute_single_action(obs, explore=False)
|
|
check(a, a_)
|
|
|
|
# Due to the higher temp, expect different actions avg'ing
|
|
# around 1.5.
|
|
actions = []
|
|
for _ in range(300):
|
|
actions.append(trainer.compute_single_action(obs))
|
|
check(np.std(actions), 0.0, false=True)
|
|
trainer.stop()
|
|
|
|
# With Random exploration.
|
|
config["exploration_config"] = {"type": "Random"}
|
|
config["explore"] = True
|
|
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v1")
|
|
actions = []
|
|
for _ in range(300):
|
|
actions.append(trainer.compute_single_action(obs))
|
|
check(np.std(actions), 0.0, false=True)
|
|
trainer.stop()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
sys.exit(pytest.main(["-v", __file__]))
|