ray/rllib/algorithms/qmix/mixers.py

62 lines
2 KiB
Python

import numpy as np
from ray.rllib.utils.framework import try_import_torch
torch, nn = try_import_torch()
class VDNMixer(nn.Module):
def __init__(self):
super(VDNMixer, self).__init__()
def forward(self, agent_qs, batch):
return torch.sum(agent_qs, dim=2, keepdim=True)
class QMixer(nn.Module):
def __init__(self, n_agents, state_shape, mixing_embed_dim):
super(QMixer, self).__init__()
self.n_agents = n_agents
self.embed_dim = mixing_embed_dim
self.state_dim = int(np.prod(state_shape))
self.hyper_w_1 = nn.Linear(self.state_dim, self.embed_dim * self.n_agents)
self.hyper_w_final = nn.Linear(self.state_dim, self.embed_dim)
# State dependent bias for hidden layer
self.hyper_b_1 = nn.Linear(self.state_dim, self.embed_dim)
# V(s) instead of a bias for the last layers
self.V = nn.Sequential(
nn.Linear(self.state_dim, self.embed_dim),
nn.ReLU(),
nn.Linear(self.embed_dim, 1),
)
def forward(self, agent_qs, states):
"""Forward pass for the mixer.
Args:
agent_qs: Tensor of shape [B, T, n_agents, n_actions]
states: Tensor of shape [B, T, state_dim]
"""
bs = agent_qs.size(0)
states = states.reshape(-1, self.state_dim)
agent_qs = agent_qs.view(-1, 1, self.n_agents)
# First layer
w1 = torch.abs(self.hyper_w_1(states))
b1 = self.hyper_b_1(states)
w1 = w1.view(-1, self.n_agents, self.embed_dim)
b1 = b1.view(-1, 1, self.embed_dim)
hidden = nn.functional.elu(torch.bmm(agent_qs, w1) + b1)
# Second layer
w_final = torch.abs(self.hyper_w_final(states))
w_final = w_final.view(-1, self.embed_dim, 1)
# State-dependent bias
v = self.V(states).view(-1, 1, 1)
# Compute final output
y = torch.bmm(hidden, w_final) + v
# Reshape and return
q_tot = y.view(bs, -1, 1)
return q_tot