ray/rllib/utils/framework.py
Sven Mika 0db2046b0a
[RLlib] Policy.compute_log_likelihoods() and SAC refactor. (issue #7107) (#7124)
* Exploration API (+EpsilonGreedy sub-class).

* Exploration API (+EpsilonGreedy sub-class).

* Cleanup/LINT.

* Add `deterministic` to generic Trainer config (NOTE: this is still ignored by most Agents).

* Add `error` option to deprecation_warning().

* WIP.

* Bug fix: Get exploration-info for tf framework.
Bug fix: Properly deprecate some DQN config keys.

* WIP.

* LINT.

* WIP.

* Split PerWorkerEpsilonGreedy out of EpsilonGreedy.
Docstrings.

* Fix bug in sampler.py in case Policy has self.exploration = None

* Update rllib/agents/dqn/dqn.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* Update rllib/agents/trainer.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* Change requests.

* LINT

* In tune/utils/util.py::deep_update() Only keep deep_updat'ing if both original and value are dicts. If value is not a dict, set

* Completely obsolete syn_replay_optimizer.py's parameters schedule_max_timesteps AND beta_annealing_fraction (replaced with prioritized_replay_beta_annealing_timesteps).

* Update rllib/evaluation/worker_set.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Review fixes.

* Fix default value for DQN's exploration spec.

* LINT

* Fix recursion bug (wrong parent c'tor).

* Do not pass timestep to get_exploration_info.

* Update tf_policy.py

* Fix some remaining issues with test cases and remove more deprecated DQN/APEX exploration configs.

* Bug fix tf-action-dist

* DDPG incompatibility bug fix with new DQN exploration handling (which is imported by DDPG).

* Switch off exploration when getting action probs from off-policy-estimator's policy.

* LINT

* Fix test_checkpoint_restore.py.

* Deprecate all SAC exploration (unused) configs.

* Properly use `model.last_output()` everywhere. Instead of `model._last_output`.

* WIP.

* Take out set_epsilon from multi-agent-env test (not needed, decays anyway).

* WIP.

* Trigger re-test (flaky checkpoint-restore test).

* WIP.

* WIP.

* Add test case for deterministic action sampling in PPO.

* bug fix.

* Added deterministic test cases for different Agents.

* Fix problem with TupleActions in dynamic-tf-policy.

* Separate supported_spaces tests so they can be run separately for easier debugging.

* LINT.

* Fix autoregressive_action_dist.py test case.

* Re-test.

* Fix.

* Remove duplicate py_test rule from bazel.

* LINT.

* WIP.

* WIP.

* SAC fix.

* SAC fix.

* WIP.

* WIP.

* WIP.

* FIX 2 examples tests.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix.

* LINT.

* Renamed test file.

* WIP.

* Add unittest.main.

* Make action_dist_class mandatory.

* fix

* FIX.

* WIP.

* WIP.

* Fix.

* Fix.

* Fix explorations test case (contextlib cannot find its own nullcontext??).

* Force torch to be installed for QMIX.

* LINT.

* Fix determine_tests_to_run.py.

* Fix determine_tests_to_run.py.

* WIP

* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).

* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).

* Rename some stuff.

* Rename some stuff.

* WIP.

* WIP.

* Fix SAC.

* Fix SAC.

* Fix strange tf-error in ray core tests.

* Fix strange ray-core tf-error in test_memory_scheduling test case.

* Fix test_io.py.

* LINT.

* Update SAC yaml files' config.

Co-authored-by: Eric Liang <ekhliang@gmail.com>
2020-02-22 14:19:49 -08:00

141 lines
3.8 KiB
Python

import logging
import os
logger = logging.getLogger(__name__)
def check_framework(framework="tf"):
"""
Checks, whether the given framework is "valid", meaning, whether all
necessary dependencies are installed. Errors otherwise.
Args:
framework (str): Once of "tf", "torch", or None.
Returns:
str: The input framework string.
"""
if framework == "tf":
if tf is None:
raise ImportError("Could not import tensorflow.")
elif framework == "torch":
if torch is None:
raise ImportError("Could not import torch.")
else:
assert framework is None
return framework
def try_import_tf(error=False):
"""
Args:
error (bool): Whether to raise an error if tf cannot be imported.
Returns:
The tf module (either from tf2.0.compat.v1 OR as tf1.x.
"""
# TODO(sven): Make sure, these are reset after each test case
# that uses them.
if "RLLIB_TEST_NO_TF_IMPORT" in os.environ:
logger.warning("Not importing TensorFlow for test purposes")
return None
try:
if "TF_CPP_MIN_LOG_LEVEL" not in os.environ:
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow.compat.v1 as tf
tf.logging.set_verbosity(tf.logging.ERROR)
tf.disable_v2_behavior()
return tf
except ImportError:
try:
import tensorflow as tf
return tf
except ImportError as e:
if error:
raise e
return None
def tf_function(tf_module):
"""Conditional decorator for @tf.function.
Use @tf_function(tf) instead to avoid errors if tf is not installed."""
# The actual decorator to use (pass in `tf` (which could be None)).
def decorator(func):
# If tf not installed -> return function as is (won't be used anyways).
if tf_module is None or tf_module.executing_eagerly():
return func
# If tf installed, return @tf.function-decorated function.
return tf_module.function(func)
return decorator
def try_import_tfp(error=False):
"""
Args:
error (bool): Whether to raise an error if tfp cannot be imported.
Returns:
The tfp module.
"""
if "RLLIB_TEST_NO_TF_IMPORT" in os.environ:
logger.warning("Not importing TensorFlow Probability for test "
"purposes.")
return None
try:
import tensorflow_probability as tfp
return tfp
except ImportError as e:
if error:
raise e
return None
def try_import_torch(error=False):
"""
Args:
error (bool): Whether to raise an error if torch cannot be imported.
Returns:
tuple: torch AND torch.nn modules.
"""
if "RLLIB_TEST_NO_TORCH_IMPORT" in os.environ:
logger.warning("Not importing Torch for test purposes.")
return None, None
try:
import torch
import torch.nn as nn
return torch, nn
except ImportError as e:
if error:
raise e
return None, None
def get_variable(value, framework="tf", tf_name="unnamed-variable"):
"""
Args:
value (any): The initial value to use. In the non-tf case, this will
be returned as is.
framework (str): One of "tf", "torch", or None.
tf_name (str): An optional name for the variable. Only for tf.
Returns:
any: A framework-specific variable (tf.Variable or python primitive).
"""
if framework == "tf":
import tensorflow as tf
return tf.compat.v1.get_variable(tf_name, initializer=value)
# torch or None: Return python primitive.
return value
# This call should never happen inside a module's functions/classes
# as it would re-disable tf-eager.
tf = try_import_tf()
torch, _ = try_import_torch()